The Effect of Haematin and Catalase on var. Growing on Glycerol Free

Abstract

var. was grown aerobically on a complex medium containing glycerol as the carbon source. Addition of haematin or bovine liver catalase to the growth medium resulted in a small increment in growth yield. Suspensions of bacteria that had been grown in the presence of haematin or catalase, respectively, translocated 0·83 to 1·98 and 1·33 to 2·53 protons per oxygen atom consumed in glycerol oxidation. Bacteria grown without haematin or catalase had nil or little respiratory-induced proton translocation during glycerol oxidation. Inclusion of haematin in the growth medium caused the bacterium to form a cyanide- and azide-sensitive catalase. Superoxide dismutase activity was similar whether or not haematin was added to the growth medium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-121-2-339
1980-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/121/2/mic-121-2-339.html?itemId=/content/journal/micro/10.1099/00221287-121-2-339&mimeType=html&fmt=ahah

References

  1. Bauchop T., Elsden S. R. 1960; The growth of micro-organisms in relation to their energy supply. Journal of General Microbiology 23:457–469
    [Google Scholar]
  2. Brand M. D. 1977; The stoichiometric relationships between electron transport, proton translocation and adenosine triphosphate synthesis and hydrolysis in mitochondria. Biochemical Society Transactions 5:1615–1620
    [Google Scholar]
  3. Britton L., Malinowski D. P., Fridovich I. 1978; Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms. Journal of Bacteriology 134:229–236
    [Google Scholar]
  4. Bryan-Jones D. G., Whittenbury R. 1969; Haematin-dependent oxidative phosphorylation in Streptococcus faecalis . Journal of General Microbiology 58:247–260
    [Google Scholar]
  5. Chappell J. B. 1964; The oxidation of citrate, isocitrate and m-aconitate by isolated mitochondria. Biochemical Journal 90:225–237
    [Google Scholar]
  6. Delwiche E. A. 1961; Catalase of Pediococcus cerevisiae . Journal of Bacteriology 81:416–418
    [Google Scholar]
  7. Dempsey P. M., O’Leary J., Condon S. 1975; Polarographic assay of hydrogen peroxide accumulation in microbial cultures. Applied Microbiology 29:170–174
    [Google Scholar]
  8. Dolin M. I. 1953; The oxidation and peroxidation of DPNH2 in extracts of Streptococcus faecalis10C1. Archives of Biochemistry and Biophysics 46:483–484
    [Google Scholar]
  9. Dolin M. I. 1975; Reduced diphosphopyridine nucleotide peroxidase. Intermediates formed on reduction of the enzyme with dithionite or reduced diphosphopyridine nucleotide. Journal of Biological Chemistry 250:310–317
    [Google Scholar]
  10. Dolin M. I. 1977; DPNH peroxidase: effector activities of DPN+. Biochemical and Biophysical Research Communications 78:393–400
    [Google Scholar]
  11. Esders T. W., Michina C. A. 1979; Purification and properties of L-α-g]ycerophosphate oxidase from Streptococcus faecium ATCC 12755. Journal of Biological Chemistry 254:2710–2715
    [Google Scholar]
  12. Fridovich I. 1978; The biology of oxygen radicals. Science 201:875–880
    [Google Scholar]
  13. Gallin J. I., VanDemark P. J. 1964; Evidence for oxidative phosphorylation in Streptococcus faecalis . Biochemical and Biophysical Research Communications 17:630–635
    [Google Scholar]
  14. Götz F., Elstner E. F., Sedewitz B., Leng-Felder E. 1980; Oxygen utilisation by Lactobacillus plantarum. II. Superoxide and superoxide dismutation. Archives of Microbiology 125:215–220
    [Google Scholar]
  15. Gregory E. M., Fridovich I. 1973; Induction of superoxide dismutase by molecular oxygen. Journal of Bacteriology 114:543–548
    [Google Scholar]
  16. Haddock B. A., Jones C. W. 1977; Bacterial respiration. Bacteriological Reviews 41:47–99
    [Google Scholar]
  17. Hoskins D. D., Whiteley H. R., Mackler B. 1962; The reduced diphosphopyridine nucleotide oxidase of Streptococcus faecalis: purification and properties. Journal of Biological Chemistry 237:2647–2653
    [Google Scholar]
  18. Jacobs N. J., VanDemark P. J. 1960a; Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis . Journal of Bacteriology 79:532–538
    [Google Scholar]
  19. Jacobs N. J., VanDemark P. J. 1960b; The purification and properties of α-glycerophosphate- oxidising enzyme of Streptococcus faecalis 10C1. Archives of Biochemistry and Biophysics 88:250–255
    [Google Scholar]
  20. Johnston M. A., Delwiche E. A. 1962; Catalase of Lactobacillaceae . Journal of Bacteriology 83:936–938
    [Google Scholar]
  21. Knowles C. J. 1980; Heme-requiring bacterial respiratory systems. In The Diversity of Bacterial Respiratory Systems 2 (in the Press). Knowles C. J. Edited by Boca Raton, Florida:: CRC Press;
    [Google Scholar]
  22. McCord J. M., Fridovich I. 1969; Superoxide dismutase, an enzymic function of erythrocuprein (hemocuprein). Journal of Biological Chemistry 244:6049–6055
    [Google Scholar]
  23. Mitchell P., Moyle J. 1967a; Acid-base titration across the membrane systems of rat-liver mitochondria. Biochemical Journal 104:588–600
    [Google Scholar]
  24. Mitchell P., Moyle J. 1967b; Respiration- driven proton translocation in rat-liver mitochondria. Biochemical Journal 105:1147–1162
    [Google Scholar]
  25. Pritchard G. G., Wimpenny J. W. T. 1978; Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var.zymogenes grown in the presence of haematin. Journal of General Microbiology 104:15–22
    [Google Scholar]
  26. Reynafarge B., Brand M. D., Lehninger A. L. 1976; Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements.. Journal of Biological Chemistry 251:7442–7451
    [Google Scholar]
  27. Ritchey T. W., Seeley H. W. 1974; Cytochromes in Streptococcus faecalis var.zymogenes grown in a haematin-containing medium. Journal of General Microbiology 85:220–228
    [Google Scholar]
  28. Ritchey T. W., Seeley H. W. 1976; Distribution of cytochrome-like respiration in streptococci. Journal of General Microbiology 93:195–203
    [Google Scholar]
  29. Sijpesteijn A. K. 1970; Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides . Antonie van Leeuwenhoek 36:335–348
    [Google Scholar]
  30. Smalley A. J., Jahling P., VanDemark P. J. 1968; Molar growth yields as evidence for oxidative phosphorylation in Streptococcus faecalis10C1. Journal of Bacteriology 96:1595–1600
    [Google Scholar]
  31. Snell F. D., Snell C. T. 1949 Colorimetric Methods of Analysis Including Some Turbidimetric and Nephelometric Methods, 3rd edn.. 2: pp. 882–883 Princeton, New Jersey:: Van Nostrand;
    [Google Scholar]
  32. Tempest D. W., Neijssel O. M. 1980; Growth yield values in relation to respiration. In Diversity of Bacterial Respiratory Systems 1 (in the Press). Knowles C. J. Edited by Boca Raton, Florida:: CRC Press;
    [Google Scholar]
  33. Van Der Wiel-Korstanje J. A. A., De Vries W. 1973; Cytochrome synthesis by Bifidobacterium during growth in media supplemented with blood. Journal of General Microbiology 75:417–419
    [Google Scholar]
  34. Whittenbury R. 1960; Two types of catalase-like activity in lactic acid bacteria. Nature; London: 187433–434
    [Google Scholar]
  35. Whittenbury R. 1964; Hydrogen peroxide formation and catalase activity in lactic acid bacteria. Journal of General Microbiology 35:13–26
    [Google Scholar]
  36. Wilson D. M., Alderete J. F., Maloney P. C., Wilson T. H. 1976; Protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis in Escherichia coli . Journal of Bacteriology 126:327–337
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-121-2-339
Loading
/content/journal/micro/10.1099/00221287-121-2-339
Loading

Data & Media loading...

Most cited Most Cited RSS feed