Negative Chemotaxis of Zoospores of the Fungus Free

Abstract

zoospores are repelled by many low molecular weight cations. This negative chemotactic response occurs at a different threshold concentration for each cation, that for the most effective ion, H, being 150 . The effectiveness of different cations parallels their ionic conductivities, the most active cations having the highest conductivities. It is suggested that the close approach of cations to the cell surface reduces the negative charge at the surface and hence changes the transmembrane potential, altering flagellum activity in such a way as to cause turning and negative chemotaxis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-120-2-347
1980-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/120/2/mic-120-2-347.html?itemId=/content/journal/micro/10.1099/00221287-120-2-347&mimeType=html&fmt=ahah

References

  1. Adam N. K. 1956 Physical Chemistry Oxford: Clarendon Press;
    [Google Scholar]
  2. Adamson A. W. 1976 Physical Chemistry of Surfaces, 3rd edn. New York: John Wiley;
    [Google Scholar]
  3. Allen R. N., Harvey J. D. 1974; Negative chemotaxis of zoospores ofPhytophthora cinnamomi. Journal of General Microbiology 84:28–38
    [Google Scholar]
  4. Armitage J. P., Evans M.C.W. 1979; Membrane potential changes during chemotaxis of Rhodopseudomonas sphaeroides. FEBS Letters 102:143–146
    [Google Scholar]
  5. Cameron J. N., Carlile M. J. 1977; Negative geotaxis of zoospores of the fungusPhytophthora. Journal of General Microbiology 98:599–602
    [Google Scholar]
  6. Cameron J. N., Carlile M. J. 1978; Fatty acids, aldehydes and alcohols as attractants for zoospores ofPhytophthora palmivora. Nature; London: 271448–449
    [Google Scholar]
  7. Crank J. 1975 The Mathematics of Diffusion, 2nd edn. Oxford: Clarendon Press;
    [Google Scholar]
  8. Dahlquist F. W., Lovely P., Koshland D. E. 1972; Quantitative analysis of bacterial migration in chemotaxis. Nature New Biology 236:120–123
    [Google Scholar]
  9. Harayama S., Iino T. 1977; Phototaxis and membrane potential in the photosynthetic bacteriumRhodospirillum rubrum. Journal of Bacteriology 131:34–41
    [Google Scholar]
  10. Harold F. M. 1977; Ion currents and physiological functions in microorganisms. Annual Review of Microbiology 31:181–203
    [Google Scholar]
  11. Helfferich F. 1962 Ion Exchange New York: McGraw-Hill;
    [Google Scholar]
  12. Khew K. L., Zentmyer G. A. 1974; Electrotactic responses of seven species of Phytophthora. Phytopathology 64:500–507
    [Google Scholar]
  13. Snedecor G. W., Cochran W. G. 1974 Statistical Methods, 6th edn. Ames, Iowa: Iowa State University Press;
    [Google Scholar]
  14. Szmelcman S., Adler J. 1976; Change in membrane potential during bacterial chemotaxis. Proceedings of the National Academy of Sciences of the United States of America 73:4387–4391
    [Google Scholar]
  15. Tso W. W., Adler J. 1974; Negative chemotaxis inEscherichia coli. Journal of Bacteriology 118:560–576
    [Google Scholar]
  16. Van Houten J. 1979; Membrane potential changes during chemokinesis in Paramecium. Science 204:1100–1103
    [Google Scholar]
  17. Weast R. C. 1976 Handbook of Chemistry and Physics, 57th edn. Ohio: Chemical Rubber Co;
    [Google Scholar]
  18. Young L. G., Nelson L. 1974; Calcium ions and control of the motility of sea-urchin spermatozoa. Journal of Reproduction and Fertility 41:371–378
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-120-2-347
Loading
/content/journal/micro/10.1099/00221287-120-2-347
Loading

Data & Media loading...

Most cited Most Cited RSS feed