1887

Abstract

A detailed radiorespirometric and enzymological analysis was made of the wild-type and GFI strains of A2 grown on numerous sugars. The wild-type used the Embden-Meyerhof, Entner-Doudoroff and pentose phosphate pathways for glucose oxidation only after culture on glucose. The fast-growing strain GFI used all three pathways after growth on glucose, maltose or fructose. The wild-type grown on a wide range of pentoses, hexoses, disaccharides, a trisaccharide and a mixture of glucose and maltose oxidized glucose by means of the Entner-Doudoroff pathway (68 to 90%) and pentose phosphate pathway (10 to 32%). The key enzyme determining the presence or absence of the Embden-Meyerhof pathway was 6-phosphofructokinase. Other mechanisms, such as a phosphoketolase pathway, were shown to be unimportant, even during growth on pentoses. Arabinose was metabolized via hexose phosphate synthesis. The mechanisms of regulation of sugar metabolism and the energetic significance of alternative pathways are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-120-2-333
1980-10-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/120/2/mic-120-2-333.html?itemId=/content/journal/micro/10.1099/00221287-120-2-333&mimeType=html&fmt=ahah

References

  1. Bang S.S., Baumann P. 1978; Properties of fructose-1,6-diphosphate phosphatase and fructose-1,6-diphosphate aldolase from Pseudomonas putida. Current Microbiology 1:5–9
    [Google Scholar]
  2. Baumann L., Baumann P. 1975; Catabolism of d-fructose and d-ribose by Pseudomonas doudoroffi. Archives of Microbiology 105:225–248
    [Google Scholar]
  3. Conrad R., Schlegel H.G. 1977; Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Archives of Microbiology 112:39–48
    [Google Scholar]
  4. Eisenberg R.C., Dobrogosz W.J. 1967; Gluconate metabolism in Escherichia coli. Journal of Bacteriology 93:941–949
    [Google Scholar]
  5. Goldman M., Blumenthal H.J. 1963; Pathways of glucose catabolism in Bacillus subtilis. Journal of Bacteriology 86:303–311
    [Google Scholar]
  6. Goldman M., Blumenthal H.J. 1964; Pathways of glucose catabolism in Bacillus cereus. Journal of Bacteriology 87:377–386
    [Google Scholar]
  7. Goldberg M., Fessenden J.M., Racker E. 1966; Phosphoketolase. Methods in Enzymology 9:515–520
    [Google Scholar]
  8. Greenley D.E., Smith D.W. 1979; A novel pathway of glucose catabolism in Thiobacillus novellus. Archives of Microbiology 122:257–261
    [Google Scholar]
  9. Höfer M., Brand K., Deckner K., Becker J.-U. 1971; Importance of the pentose phosphate pathway for D-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis. Biochemical Journal 123:855–863
    [Google Scholar]
  10. Johnson E.J., Macelroy R.D. 1973; Regulation in the chemolithotroph Thiobacillus neapolitanus: fructose-1,6-diphosphatase. Archives of Microbiology 93:23–28
    [Google Scholar]
  11. Kersters K., De Ley J. 1968; The occurrence of the Entner-Doudoroff pathway in bacteria. Antonie von Leeuwenhoek 34:393–408
    [Google Scholar]
  12. Krebs H.A.., Kornberg A. 1957; Energy transformations in living matter. Ergebnisse der Physiologie (biologischen Chemie und experiment ellen Pharmakologie) 49:212–298
    [Google Scholar]
  13. Lynch W.H., Macleod J., Franklin M. 1975; Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens. Canadian Journal of Microbiology 21:1560–1572
    [Google Scholar]
  14. Mahler H.R., Cordes E.H. 1966 Biological Chemistry pp. 454–455 New York: Harper & Row.;
    [Google Scholar]
  15. Olijve W., Kok J.J. 1979a; Analysis of growth of Gluconobacter oxydans in glucose containing media. Archives of Microbiology 121:283–290
    [Google Scholar]
  16. Olijve W., Kok J.J. 1979b; An analysis of the growth of Gluconobacter oxydans in chemostat cultures. Archives of Microbiology 121:291–297
    [Google Scholar]
  17. Ornston L.N. 1971; Regulation of catabolic pathways in Pseudomonas. Bacteriological Reviews 35:87–116
    [Google Scholar]
  18. Quay S.C., Friedman S.B., Eisenberg R.C. 1972; Gluconate regulation of glucose catabolism in Pseudomonas fluorescens. Journal of Bacteriology 112:291–298
    [Google Scholar]
  19. Raj H.D. 1977; Microcyclus and related ringforming bacteria. CRC Critical Reviews in Microbiology 4:243–268
    [Google Scholar]
  20. Sawyer M.H., Baumann P., Baumann L., Berman S.M., Cánovas J.L., Berman R.H. 1977; Pathways of D-fructose catabolism in species of Pseudomonas. Archives of Microbiology 112:49–55
    [Google Scholar]
  21. Smith A.L., Kelly D.P., Wood A.P. 1980; Metabolism of Thiobacillus A2 grown under autotrophic, mixotrophic and heterotrophic conditions in chemostat culture. Journal of General Microbiology 121: (in the Press)
    [Google Scholar]
  22. Sobel M.E., Krulwich T.A. 1973; Metabolism of D-fructose by Arthrobacter pyridinolis. Journal of Bacteriology 113:907–913
    [Google Scholar]
  23. Stern I.J., Wang C.H., Gilmour C.M. 1960; Comparative metabolism of carbohydrates in Pseudomonas species. Journal of Bacteriology 79:601–611
    [Google Scholar]
  24. Taylor B.F., Hoare D.S. 1969; New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. Journal of Bacteriology 100:487–497
    [Google Scholar]
  25. Tiwari N.P., Campbell J.J.R. 1969; Enzymatic control of the metabolic activity of Pseudomonas aeruginosa growing in glucose or succinate media. Biochimica et biophysica acta 192:395–401
    [Google Scholar]
  26. Van Dijken J.P., Quayle J.R. 1977; Fructose metabolism in four Pseudomonas species. Archives of Microbiology 114:281–286
    [Google Scholar]
  27. Vicente M., Cánovas J.L. 1973; Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. Journal of Bacteriology 116:908–914
    [Google Scholar]
  28. Wang C.H., Stern I., Gilmour C.M., Klungsoyr S., Reed D.J., Bialy J.J., Christensen B.E., Cheldelin V.H. 1958; Comparative study of glucose catabolism by the radiorespirometric method. Journal of Bacteriology 76:207–216
    [Google Scholar]
  29. Wang C.H., Stern I.J., Gilmour C.M. 1959; The catabolism of glucose and gluconate in Pseudomonas species. Archives of Biochemistry and Biophysics 81:489–492
    [Google Scholar]
  30. Wood W.A. 1961; Fermentation of carbohydrates and related compounds. In The Bacteria 2 pp. 59–149 Edited by Gunsalus I. C., Stanier R. Y. New York & London: Academic Press;
    [Google Scholar]
  31. Wood A.P., Kelly D.P. 1977; Heterotrophic growth of Thiobacillus A2 on sugars and organic acids. Archives of Microbiology 113:257–264
    [Google Scholar]
  32. Wood A.P., Kelly D.P. 1978; Triple catabolic pathways for glucose in a fast-growing strain of Thiobacillus A2. Archives of Microbiology 117:309–310
    [Google Scholar]
  33. Wood A.P., Kelly D.P. 1979; Glucose catabolism in Thiobacillus A2 grown in chemostat culture under carbon or nitrogen limitation. Archives of Microbiology 122:307–312
    [Google Scholar]
  34. Wood A.P., Kelly D.P. 1980; Regulation of glucose catabolism in Thiobacillus A2 grown in the chemostat under dual limitation by succinate and glucose. Archives of Microbiology (in the Press).
    [Google Scholar]
  35. Wood A.P., Kelly D.P., Thurston C.F. 1977; Simultaneous operation of three catabolic pathways in the metabolism of glucose by Thiobacillus A2. Archives of Microbiology 113:265–274
    [Google Scholar]
  36. Zagallo A.C., Wang C.H. 1967; Comparative glucose catabolism of Xanthomonas species. Journal of Bacteriology 93:970–975
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-120-2-333
Loading
/content/journal/micro/10.1099/00221287-120-2-333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error