1887

Abstract

Phenetic data on 75 strains of and other representative genera of the were collected and analysed using two numerical taxonomic methods. In both methods the same subclusters were recovered. The subclusters, however, were defined at different similarity levels and were classified into clusters of different composition. strains formed a very tight, homogeneous subcluster, completely distinct and readily distinguishable from other and species studied. DNA: DNA hybridizations between and and species were analysed to corroborate the numerical classifications. A good correlation between the numerical and DNA: DNA hybridization analyses was found and provided sufficient evidence for not supporting the previously proposed subspecific taxonomic position of The data clearly showed that is a separate species in its own right. Based on the existence of very high genetic relatedness and high similarities in phenetic characters among strains and the confinement of the pathogen to the state of California, the hypothesis is offered that originated from a single source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-120-1-117
1980-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/120/1/mic-120-1-117.html?itemId=/content/journal/micro/10.1099/00221287-120-1-117&mimeType=html&fmt=ahah

References

  1. Bailey W. R., Scott E. G. 1974 Diagnostic Microbiology. St. Louis: The C. V. Mosby Co.;
    [Google Scholar]
  2. Barry A. L., Bernsohm K. L., Adams A. P., Thrupp L. D. 1970; Improved 18-hour methyl red test. Applied Microbiology 20:866–870
    [Google Scholar]
  3. Blenden DC., Goldberg H. S. 1965; Silver impregnation stain for Leptospira and flagella. Journal of Bacteriology 89:899–900
    [Google Scholar]
  4. Brenner D. J. 1973; Deoxyribonucleic acid reassociation in the taxonomy of enteric bacteria. International Journal of Systematic Bacteriology 23:298–307
    [Google Scholar]
  5. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1972; Deoxyribonucleic acid relatedness among species of Erwinia and between Erwinia species and other enterobacteria. Journal of Bacteriology 110:12–17
    [Google Scholar]
  6. Brenner D. J., Steigerwalt A. G., Miklos G. V., Fanning G. R. 1973; Deoxyribonucleic acid relatedness among erwiniae and other enterobacteriaceae: the soft rot organisms (genus Pectobacterium Waldee). International Journal of Systematic Bacteriology 23:205–216
    [Google Scholar]
  7. Brenner D. J., Fanning G. R., Steigerwalt A. G. 1974; Deoxyribonucleic acid relatedness among erwiniae and other enterobacteriaceae: the gall, wilt, and dry necrosis organisms (genus Erwinia Winslow et al., sensu stricto). International Journal of Systematic Bacteriology 24:197–204
    [Google Scholar]
  8. Brooks R. F., Hucker G. J. 1944; A study of certain members of the genus Corynebacterium. Journal of Bacteriology 48:295–312
    [Google Scholar]
  9. Burton K. 1968; Determination of DNA concentration with diphenylamine. Methods in Enzymology 12:163–166
    [Google Scholar]
  10. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology 52:461–466
    [Google Scholar]
  11. Coblentz L. M. 1943; Rapid detection of the production of acetylmethylcarbinol. American Journal of Public Health 33:815–817
    [Google Scholar]
  12. Colwell R. R., Johnson R., Wan L., Lovelace T. E., Brenner D. J. 1974; Numerical taxonomy and deoxyribonucleic acid reassociation in the taxonomy of some Gram-negative fermentative bacteria. International Journal of Systematic Bacteriology 24:422–433
    [Google Scholar]
  13. Denhardt D. T. 1966; A membrane filter technique for the detection of complementary DNA. Biochemical and Biophysical Research Communications 23:641–646
    [Google Scholar]
  14. Drlica K. A., Kado C. I. 1974; Quantitative estimation of Agrobacterium tumefaciens DNA in crown gall tumor cells. Proceedings of the National Academy of Sciences of the United States of America 71:3677–3681
    [Google Scholar]
  15. Dye D. W. 1968; A taxonomic study of the genus Erwinia. I. The ‘amylovora’ group. New Zealand Journal of Science 11:590–607
    [Google Scholar]
  16. Dye D. W. 1969a; A taxonomic study of the genus Erwinia. II. The ‘carotovora’ group. New Zealand Journal of Science 12:81–97
    [Google Scholar]
  17. Dye D. W. 1969b; A taxonomic study of the genus Erwinia. III. The ‘herbicola’ group. New Zealand Journal of Science 12:223–236
    [Google Scholar]
  18. Dye D. W. 1969c; A taxonomic study of the genus Erwinia. IV. Atypical erwinias. New Zealand Journal of Science 12:833–839
    [Google Scholar]
  19. Ewing W. H., Davis B. R., Reavis R. W. 1957; Phenylalanine and malonate media and their use in enteric bacteriology. Public Health Laboratory 15:153–166
    [Google Scholar]
  20. Flavell R. A., Birfelder E. J., Sanders J.P.M., Borst P. 1974; DNA-DNA hybridization on nitrocellulose filters. 1. General considerations and non-ideal kinetics. European Journal of Biochemistry 47:535–543
    [Google Scholar]
  21. Focht D. D., Lockhart W. R. 1965; Numerical survey of some bacterial taxa. Journal of Bacteriology 90:1314–1319
    [Google Scholar]
  22. Gardner J. M., Kado C. I. 1972; Comparative base sequence homologies of the deoxyribonucleic acid of Erwinia species and other enterobacteri- aceae. International Journal of Systematic Bacteriology 22:201–209
    [Google Scholar]
  23. Gardner J. M., Kado C. I. 1973; Evidence for systemic movement of Erwinia rubrifaciens in Persian walnuts by the use of double-antibiotic markers. Phytopathology 63:1085–1086
    [Google Scholar]
  24. Goodfellow M., Alderson G. 1977; The actinomycete-genus Rhodococcus: a home for the ‘rhodochrous’ complex. Journal of General Microbiology 100:99–122
    [Google Scholar]
  25. Goodfellow M., Austin B., Dickinson C. H. 1976; Numerical taxonomy of some yellow- pigmented bacteria isolated from plants. Journal of General Microbiology 97:219–233
    [Google Scholar]
  26. Goodfellow M., Orlean P.A.B., Collins M. D., Alshamaony L., Minnikin D. E. 1978; Chemical and numerical taxonomy of strains received as Gordona aurantiaca. . Journal of General Microbiology 109:57–68
    [Google Scholar]
  27. Gross N. M., Wayne L. G. 1970; Nucleic acid homology in the genus Mycobacterium. Journal of Bacteriology 104:630–634
    [Google Scholar]
  28. Hajna A. A. 1945; Triple-sugar iron agar medium for the identification of the intestinal group of bacteria. Journal of Bacteriology 49:516–517
    [Google Scholar]
  29. Happold F. C., Hoyle L. H. 1934; The quantitative determination of indole in bacterial cultures. Biochemical Journal 28:1171–1172
    [Google Scholar]
  30. Holding A. J., Collee J. G. 1971; Routine biochemical tests. Methods in Microbiology 6:1–32
    [Google Scholar]
  31. Kado C. I., Gardner M. M. 1977; Transmission of deep bark canker of walnuts by the mechanical harvester. Plant Disease Reporter 61:321–325
    [Google Scholar]
  32. Kado C. I., Heskett M. G. 1970; Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xantho- monas. . Phytopathology 60:969–976
    [Google Scholar]
  33. Kado C. l., Heskett M. G., Langley R. A. 1972; Studies on Agrobacterium tumefaciens: characterization of strains 1D135 and B6, and analysis of the bacterial chromosome transfer RNA and ribosomes for tumor-inducing ability. Physiological Plant Pathology 2:47–57
    [Google Scholar]
  34. Kado C. I., Dutra J., Moller W. J., Ramos D. E. 1977; An assessment of the susceptibility of various walnut cultivars to deep bark canker. Journal of the American Society for Horticultural Sciences 102:698–702
    [Google Scholar]
  35. Komagata K., Tamagawa Y., Kocur M. 1968; Differentiation of Erwinia amylovora Erwinia carotovora, and Erwinia herbicola. . Journal of General and Applied Microbiology 14:39–45
    [Google Scholar]
  36. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature; London: 178703
    [Google Scholar]
  37. Krieg R. E., Lockhart W. R. 1966; Classification of enterobacteria based on overall similarity. Journal of Bacteriology 92:1275–1280
    [Google Scholar]
  38. Langley R. A., Kado C. I. 1972; Studies on Agrobacterium tumefaciens, conditions for mutagenesis by N-methyl-N’-nitro-N-nitrosoguanidine and relationships of A. tumefaciens mutants to crown-gall tumor induction. Mutation Research 14:277–286
    [Google Scholar]
  39. Lelliott R. A. 1974; Genus XII.Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209. . In Bergey’s Manual of Determinative Bacteriology, 8th edn.. pp. 332–339 Buchanan R. E., Gibbons N. E. Edited by Baltimore, U.S.A.: Williams & Wilkins;
    [Google Scholar]
  40. Lelliott R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology 29:470–489
    [Google Scholar]
  41. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  42. Mcconaughy B., Laird C. D., Mccarthy B. J. 1969; Nucleic acid reassociation in forma-mide. Biochemistry 8:3289–3295
    [Google Scholar]
  43. Moeller V. 1955; Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta pathologica et microbiologica scandinavica 36:158–172
    [Google Scholar]
  44. Mordarski M., Szyba K., Pulverer G., Good-fellow M. 1976; Deoxyribonucleic acid reassociation in the classification of the ‘rhodo- chrous’ complex and allied taxa. Journal of General Microbiology 94:235–245
    [Google Scholar]
  45. Moustardier G., Brisou J., Sout J., Ehrhardt J. P. 1961; Les Erwinia. Discussion taxonomique Interet Medical. Bulletin de l’Association des diplomés de microbiologie de la Faculté de pharma- cie de Nancy 82:3–12
    [Google Scholar]
  46. Murata N., Starr M. P. 1974; Intrageneric clustering and divergence of Erwinia strains from plants and man in the light of deoxyribonucleic acid segmental homology. Canadian Journal of Microbiology 20:1545–1565
    [Google Scholar]
  47. Quadling C. 1970; Analyzing the data. In Methods for Numerical Taxonomy pp. 34–47 Lockhart W. R., Liston J. Washington: American Society for Microbiology;
    [Google Scholar]
  48. Rhodes M. E. 1959; The characterization of Pseudomonas fluorescens. Journal of General Microbiology 21:221–263
    [Google Scholar]
  49. Schaad N. W., Wilson E. E. 1970a; Survival of Erwinia rubrifaciens in soil. Phytopathology 60:
    [Google Scholar]
  50. Schaad N. W., Wilson E. E. 1970b; Pathological anatomy of the bacterial phloem canker disease of Juglans regia. Canadian Journal of Botany 48:1055–1060
    [Google Scholar]
  51. Schaad N. W., Wilson E. E. 1971a; Bacterial phloem canker of Persian walnut, development and control factors. California Agriculture 25:4–7
    [Google Scholar]
  52. Schaad N. W., Wilson E. E. 1971b; The ecology of Erwinia rubrifaciens and development of phloem canker of Persian walnut. Annals of Applied Biology 69:125–136
    [Google Scholar]
  53. Schaad N. W., Heskett M. G., Gardner J. M., Kado C. I. 1973; Influence of inoculum dosage, time after wounding, and season of infection of Persian walnut trees by Erwinia rubrifaciens. Phytopathology 63:327–329
    [Google Scholar]
  54. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22
    [Google Scholar]
  55. Singer J., Volcani B. E. 1955; An improved ferric chloride test for differentiating Proteus- Providencia group from other Enterobacteriaceae. Applied Microbiology 24:449–452
    [Google Scholar]
  56. Smith N. R., Gordon R. E., Clark F. E. 1952; Aerobic sporeforming bacteria. U.S. Department of Agriculture Monograph 16:1–148
    [Google Scholar]
  57. Sneath P.H.A. 1957; The application of computers to taxonomy. Journal of General Microbiology 17:201–226
    [Google Scholar]
  58. Sneath P.H.A. 1972; Computer taxonomy. Methods in Microbiology 7A:29–98
    [Google Scholar]
  59. Sneath P.H.A., Johnson R. 1972; The influence on numerical taxonomic similarities of errors in microbiological tests. Journal of General Microbiology 72:377–392
    [Google Scholar]
  60. Sneath P.H.A., Sokal R. R. 1973; Numerical taxonomy. The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman;
    [Google Scholar]
  61. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38:1409–1438
    [Google Scholar]
  62. Staley T. E., Colwell R. R. 1973; Deoxyribonucleic acid reassociation among members of the genus Vibrio. International Journal of Systematic Bacteriology 23:316–332
    [Google Scholar]
  63. Studier F. W. 1965; Sedimentation studies of the size and shape of DNA. Journal of Molecular Biology 11:373–390
    [Google Scholar]
  64. Thornley M. J. 1960; The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. Journal of Applied Bacteriology 23:37–52
    [Google Scholar]
  65. Wilson E. E., Zeitoun F. M., Fredrickson D. L. 1967; Bacterial phloem canker, a new disease of Persian walnut trees. Phytopathology 57:618–621
    [Google Scholar]
  66. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F. 1978a; The use of the term ‘Pathovar’ in the classification of plant pathogenic bacteria. Proceedings of the Fourth International Conference on Plant Pathogenic Bacteria Angers pp. 359–363
    [Google Scholar]
  67. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F. 1978b; A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research 21:153–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-120-1-117
Loading
/content/journal/micro/10.1099/00221287-120-1-117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error