1887

Abstract

SUMMARY: (strain El Agheila Z) oxidized malate, fumarate, succinate, lactate and pyruvate quantitatively to acetate in cultures containing excess sulphate. Polysaccharide accumulated in old cultures.

Cell suspensions harvested from malate media yielded theoretical amounts of sulphide and CO from malate, fumarate or succinate+excess sulphate. Succinate was formed transiently during malate oxidation. Various inorganic sulphur-containing anions, methylene blue or oxygen acted as alternative hydrogen acceptors to sulphate for malate oxidation. In the absence of sulphate, malate was metabolized yielding acetate, CO and succinate in the molar ratio 3 malate → 2 succinate + 2CO+ acetate; in hydrogen, malate or fumarate were partly reduced to succinate. Malate or fumarate accelerated the reduction of sulphate, but not dithionite, in hydrogen. Suspensions treated with cetyltrimethylammonium bromide formed fumarate and lactate + CO from malate. Fumarate was formed via a reversible fumarase: lactate was formed via a decarboxylase system independent of cozymase, Mn, cocarboxylase or codecarboxylase.

Cell suspensions harvested from lactate media yielded theoretical amounts of sulphide and CO from lactate or pyruvate+ excess sulphate. In the presence of arsenite, pyruvate was formed from lactate; pyruvate formation was demonstrated with another strain.

Suspensions of strain California 43:63 harvested from lactate media reduced fumarate in H quantitatively to succinate; crotonate, maleate or acetylene-dicarb-oxylate were not reduced; malate was reduced slowly.

Hence the reaction sequence: succinate ⇌ fumarate ⇌ malate ⇌ lactate ⇌ pyruvate ⇌ acetate probably takes place in these bacteria: a reversible succinate ⇌ fumarate system may form a link between sulphate reduction and the oxidation of organic compounds or hydrogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-12-3-429
1955-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/12/3/mic-12-3-429.html?itemId=/content/journal/micro/10.1099/00221287-12-3-429&mimeType=html&fmt=ahah

References

  1. Adams M.E., Butlin K.R., Hollands S.J., Postgate J.R. 1951; Role of hydrogenase in the autotrophy of Desulphovibrio.. Research 4:245
    [Google Scholar]
  2. Baars J.K. 1930; Over Sulfaatreduetie door Bacteriän.. Dissertation, W.D. Meinema, Delft
    [Google Scholar]
  3. Barker S.B., Summerson W.H. 1941; The colorimetric determination of lactic acid in biological material.. J. biol. Chem. 138:535
    [Google Scholar]
  4. Beijerinck M.W. 1895; Über Spirillum desulfuricans als Ursache von Sulfat-reduktion.. Zbl. Bakt. (2. Abt.) 1:1–49104
    [Google Scholar]
  5. Butlin K.R., Adams M.E. 1947; Autotrophic growth of sulphate-reducing bacteria.. Nature; Lond.: 160154
    [Google Scholar]
  6. Butlin K.R., Adams M.E., Thomas M. 1949; The isolation and cultivation of sulphate-reducing bacteria.. J. gen. Microbiol. 3:46
    [Google Scholar]
  7. Chemistry Research 1952 1953 Rep. Chem. Res. Bd. Lond.: H.M.S.O.;
    [Google Scholar]
  8. Delden A.van. 1903; Beitrag zur Kenntnis der Sulfatreduktion durch Bak-terien.. Zbl. Bakt. 2. Abt. 11:81–113
    [Google Scholar]
  9. Fisher H.F., Krasna A.I., Rittenberg D. 1954; The interaction of hydro-genase with oxygen.. J. biol. Chem. 209:569
    [Google Scholar]
  10. Friedemann T.E. 1938; The identification and quantitative determination of volatile alcohols and acids.. J. biol. Chem. 123:161
    [Google Scholar]
  11. Friedemann T.E., Haugen G.E. 1943; Pyruvic acid. II. The determination of keto-acids in blood and urine.. J. biol. Chem. 147:415
    [Google Scholar]
  12. Grossman J.P., Postgate J.R. 1953; The cultivation of sulphate-reducing bacteria.. Nature; Lond.: 171600
    [Google Scholar]
  13. Korkes S., delCampillo A., Ochoa S. 1950; Biosynthesis of dicarboxylic acids by carbon dioxide fixation. IV.. J. biol. Chem. 187:891
    [Google Scholar]
  14. Millet J. 1954; Dégradation anaérobie du pyruvate par un extrait enzymatique de Desulphombrio desulphuricans. . C.R. Acad. Sci.Paris 238:408
    [Google Scholar]
  15. Neish A.C. 1950 Analytical Methods for Bacterial Fermentation. Nat. Res. Coun. of Canada Rep. no. 46–8–3. Saskatoon.
    [Google Scholar]
  16. Nossal P.M. 1951; The decarboxylation of malic acid by Lactobacillus arabinosus. . Biochem. J. 49:407
    [Google Scholar]
  17. Postgate J.R. 1951; The reduction of sulphur compounds by Desulphombrio desulphuricans. . J. gen. Microbiol. 5:725
    [Google Scholar]
  18. Postgate J.R. 1952a; Growth of sulphate-reducing bacteria in sulphate-free media.. Research 5:189
    [Google Scholar]
  19. Postgate J.R. 1952b; The utilisation of pyruvate by sulphate reducers.. Abstr. 2nd Int. Congr. Biochem.Paris p. 92
    [Google Scholar]
  20. Postgate J.R. 1953; On the nutrition of Desulphombrio desulphuricans; a correction.. J. gen. Microbiol. 9:440
    [Google Scholar]
  21. Postgate J.R. 1954a; Presence of cytochrome in an obligate anaerobe.. Biochem. J. 56:xi
    [Google Scholar]
  22. Postgate J.R. 1954b; Dependence of sulphate reduction and oxygen utilization on a cytochrome in Desulphombrio. . Biochem. J. 58:ix
    [Google Scholar]
  23. Sadana J.C. 1954; Pyruvate oxidation in Desulphombrio desulphuricans. . J. Bact. 67:547
    [Google Scholar]
  24. Senez J.C. 1951; Étude comparative de la croissance de Sporovibrio desulphuricans sur pyruvate et sur lactate de soude.. Ann. Inst.Pasteur 80:395
    [Google Scholar]
  25. Senez J.C. 1953; Sur l’activité et la croissance des bactéries anaérobies sulfato- réductrices en cultures semi-autotrophes.. Ann. Inst.Pasteur 84:595
    [Google Scholar]
  26. Senez J.C. 1954a; Fermentation de l’acide pyruvique et des acides dicarboxyliques par les bactéries anaérobies sulfato-réductrices.. Bull. Soc. Chim. biol.Paris 36:541
    [Google Scholar]
  27. Senez J.C. 1954b; Concurrence of autotrophic and heterotrophic metabolism in growing and in resting cells of sulphate-reducing bacteria.. J. gen.Microbiol. 11:vi
    [Google Scholar]
  28. Senez J.C., Leroux-Gilleron J. 1954; Note préliminaire sur la dégradation anaérobie de la cystéine et de la cystine par les bactéries sulfato-réductrices.. Bull. Soc. Chim. biol.Paris 36:553
    [Google Scholar]
  29. Sisler F.D., ZoBell C.E. 1951; Hydrogen utilization by some marine sulphate-reducing bacteria.. J. Bact. 62:117
    [Google Scholar]
  30. Stephenson M. 1949 Bacterial Metabolism, 3rd ed.. p. 46 London:: Longmans, Green and Co.;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-12-3-429
Loading
/content/journal/micro/10.1099/00221287-12-3-429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error