1887

Abstract

Mutants of deficient in the periplasmic enzyme 2′:3′-cyclic phosphodiesterase have been obtained. The gene, designated , was mapped by conjugation and transduction and found to be located about 0·11 min to the right of the locus on the genetic map.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-119-1-31
1980-07-01
2021-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/119/1/mic-119-1-31.html?itemId=/content/journal/micro/10.1099/00221287-119-1-31&mimeType=html&fmt=ahah

References

  1. Anraku Y. 1964a; A new cyclic phosphodiesterase having 3´-nucleotidase activity from Escherichia coli B. I. Purification and some properties of the enzyme. Journal of Biological Chemistry 239:3412–3419
    [Google Scholar]
  2. Anraku Y. 1964b; A new cyclic phosphodiesterase having a 3´-nucleotidase activity from Escherichia coli B. II. Further studies on substrate specificity and mode of action of the enzyme. Journal of Biological Chemistry 239:3420–3424
    [Google Scholar]
  3. Bachmann B. J., Low K. B., Taylor A. L. 1976; Recalibrated linkage map of Escherichia coli K-12. Bacteriological Reviews 40:116–167
    [Google Scholar]
  4. Beacham I. R. 1979; Periplasmic enzymes in gramnegative bacteria. International Journal of Biochemistry 10:877–883
    [Google Scholar]
  5. Beacham I. R., Yagil E. 1976; Genetic location of the gene (ush) specifying periplasmic uridine 5'-diphosphate glucose hydrolase (5´-nucleotidase) in Escherichia coli K-12. Journal of Bacteriology 128:487–489
    [Google Scholar]
  6. Beacham I. R., Kahana R., Levy L., Yagil E. 1973; Mutants of Escherichia coli K-12 ‘cryptic’, or deficient in 5´-nucleotidase (uridine diphosphate- sugar hydrolase) and 3´-nucleotidase (cyclic phosphodiesterase) activity. Journal of Bacteriology 116:957–964
    [Google Scholar]
  7. Beacham I. R., Haas D., Yagil E. 1977; Mutants of Escherichia coli ‘cryptic’ for certain periplasmic enzymes: evidence for an alteration of the outer membrane. Journal of Bacteriology 129:1034–1044
    [Google Scholar]
  8. Curtiss R., Charomella L. J., Berg C. M., Harris P. E. 1965; Kinetic and genetic analyses of d-cycloserine inhibition and resistance in Escherichia coli. Journal of Bacteriology 90:1238–1250
    [Google Scholar]
  9. Dvorak H. F., Brockman R. W., Heppel L. A. 1967; Purification and properties of two acid phosphatase fractions isolated from osmotic shock fluid of Escherichia coli. Biochemistry 6:1743–1751
    [Google Scholar]
  10. Heppel L. A. 1971; The concept of periplasmic enzymes. In Structure and Function of Biological Membranes pp. 224–247 Edited by Rothfield L. I. New York: Academic Press;
    [Google Scholar]
  11. Isono K., Kitakawa U. 1978; Cluster of ribosomal protein genes in Escherichia coli containing genes for proteins S6, S18 and L9. Proceedings of the National Academy of Sciences of the United States of America 756163–6167
    [Google Scholar]
  12. Miller J. H. 1972 >Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Rosner J. L. 1972; Formation, induction and curing of bacteriophage PI lysogens. Virology 48:679–689
    [Google Scholar]
  14. Russell R. R. B. 1972; Mapping of a d-cycloserine resistance locus in Escherichia coli K-12. Journal of Bacteriology 111:622–624
    [Google Scholar]
  15. Wu T. T. 1966; A model for three-point analysis of random general transduction. Genetics 54:405–410
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-119-1-31
Loading
/content/journal/micro/10.1099/00221287-119-1-31
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error