1887

Abstract

is known to break down arginine by the arginine deiminase pathway. An additional pathway has now been found whereby arginine is converted to putres-cine with agmatine and -carbamoylputrescine as intermediates. The following enzyme activities belonging to this pathway were detected in crude extracts: arginine decarboxylase (EC 4.1.1.19), which catalyses the release of CO from arginine to give agmatine; agmatine deiminase (EC 3.5.3.12), which degrades agmatine to -carbamoylputrescine; and -carbamoylputrescine amidinohydrolase (EC 3.5.3.-), which then removes the ureido group of carbamoylputrescine. In crude extracts, arginine decarboxylase activity was stimulated by pyridoxal phosphate, Mg and by the products of the catabolic pathway, putrescine and spermidine.

Growth of on arginine as the sole carbon and nitrogen source markedly increased the activity of arginine decarboxylase. Agmatine and -carbamoylputrescine induced the synthesis of agmatine deiminase and -carbamoylputrescine hydrolase. Addition of succinate or citrate to medium containing arginine or agmatine led to repression of the agmatine deiminase and -carbamoylputrescine hydrolase was further increased when was grown in media with agmatine plus glutamine or agmatine plus succinate and ammonia. This suggests that the expression of the agmatine pathway may be regulated by carbon catabolite repression as well as nitrogen catabolite repression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-116-2-381
1980-02-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/116/2/mic-116-2-381.html?itemId=/content/journal/micro/10.1099/00221287-116-2-381&mimeType=html&fmt=ahah

References

  1. Archibald R. M. 1944; Determination of citrul- line and allantoin and demonstration of citrulline in blood plasma. Journal of Biological Chemistry 156:121–141
    [Google Scholar]
  2. Bauchop T., Elsden S. R. 1960; The growth of microorganisms in relation to their energy status. Journal of General Microbiology 23:457–460
    [Google Scholar]
  3. Broman K., Stalon V., Wiame J. M. 1975; The duplication of arginine catabolism and the meaning of the two ornithine carbamoyltransfer- ases in Bacillus licheniformis . Biochemical and Biophysical research communications 66:821–827
    [Google Scholar]
  4. Broman K., Lauwers N., Stalon V., Wiame J. M. 1978; Oxygen and nitrate utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their synthesis. Journal of Bacteriology 135:920–927
    [Google Scholar]
  5. Fothergill J. C., Guest J. R. 1977; Catabolism of L-lysine by Pseudomonas aeruginosa . Journal of General Microbiology 99:139–155
    [Google Scholar]
  6. Gehrke C. W., Kuo K. C., Ellis R. L., Waal-KES T. P. 1977; Polyamines - an improved automated ion-exchange method. Journal of Chromatography 143:345–361
    [Google Scholar]
  7. Haas D., Leisinger TH. 1974; Multiple control of 7V-acetylglutamate synthetase from Pseudomonas aeruginosa:synergistic inhibition by acetylglutamate and polyamines. Biochemical and Biophysical Research Communications 60:42–47
    [Google Scholar]
  8. Haas D., Evans R., Mercenier A., Simon J. P., Stalon Y. 1979; Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. Journal of Bacteriology 139:713–720
    [Google Scholar]
  9. Halleux P., Legrain C., Stalon V., Piérard A., Wiame J. M. 1972; Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A study of the quaternary structure. European Journal of Biochemistry 31:386–393
    [Google Scholar]
  10. Kay W. W., Gronlund A. F. 1969; Amino acid pool formation in Pseudomonas aeruginosa . Journal of Bacteriology 97:282–291
    [Google Scholar]
  11. Legrain C., Stalon V. 1976; Ornithine carbamoyltransferase from E. coli W: purification, structure and steady-state kinetic analysis. European Journal of Biochemistry 63:289–301
    [Google Scholar]
  12. Leisinger TH., Haas D., Hegarty M. P. 1972; Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa . Biochimica et biophysica acta 262:214–219
    [Google Scholar]
  13. Mercenier A., Simon J. P., Stalon V. 1978; Le catabolisme de l’arginine chez Pseudomonas aeruginosa . Archives internationales de physiologie et de biochimie 86:919–920
    [Google Scholar]
  14. Miller D. L., Rodwell V. 1971; Metabolism of basic amino acids in Pseudomonas putida. Intermediates in l-arginine catabolism. Journal of Biological Chemistry 246:5053–5058
    [Google Scholar]
  15. Mitruka B. M., Costilow R. N. 1967; Arginine catabolism by Clostridium botulinum . Journal of Bacteriology 93:295–301
    [Google Scholar]
  16. Moore S., Spackman D. H., Stein W. H. 1958; Chromatography of amino acids on sulfonate polystyrene resins. Analytical Chemistry 30:1185–1206
    [Google Scholar]
  17. Morris D. R., Pardee A. J. 1966; Multiple pathways of putrescine biosynthesis in Escherichia coli . Journal of Biological Chemistry 241:3129–3135
    [Google Scholar]
  18. Nyberg K., Clarke P. H. 1978; Glutamine synthetase activities of cultures of Pseudomonas aeruginosa grown in minimal media with histidine, nitrate or ammonium sulphate as nitrogen source. Journal of General Microbiology 107:193–197
    [Google Scholar]
  19. Potts J. R., Clarke P. H. 1976; The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa. . Journal of General Microbiology 93:377–387
    [Google Scholar]
  20. Ramos F., Thuriaux P., Wiame J. M., Béchet J. 1970; The participation of ornithine and citrulline in the regulation of arginine metabolism in S. cerevisiae. . European Journal of Biochemistry 12:40–17
    [Google Scholar]
  21. Roon R. J., Barker H. A. 1972; Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamylase. Journal of Bacteriology 109:44–50
    [Google Scholar]
  22. Rosenfeld M. J., Roberts S. 1976; Arginine decarboxylase from Pseudomonas species. Journal of Bacteriology 125:601–607
    [Google Scholar]
  23. Slade H. D., Doughty C. C., Slamp W. C. 1954; The synthesis of high energy phosphate in the citrulline ureidase reaction by soluble enzyme of Pseudomonas . Archives of Biochemistry and Biophysics 48:333–336
    [Google Scholar]
  24. Smith T. A. 1965; N-Carbamylputrescine amido- hydrolase of higher plants and its relation to potassium nutrition. Phytochemistry 4:599–607
    [Google Scholar]
  25. Smith T. A., Garraway J. L. 1964; N-Car- bamylputrescine - an intermediate in the formation of putrescine by barley. Phytochemistry 3:23–26
    [Google Scholar]
  26. Stalon V. 1972; Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A study of the allosteric interactions. European Journal of Biochemistry 29:36–46
    [Google Scholar]
  27. Stalon V., Ramos F., Piérard A., Wiame J. M. 1967; The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas . Biochimica et biophysica acta 139:91–97
    [Google Scholar]
  28. Stalon V., Ramos F., Piérard A., Wiame J. M. 1972; Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison with the anabolic transferase and with a mutationally modified catabolic transferase. European Journal of Biochemistry 29:25–35
    [Google Scholar]
  29. Thornley M. J. 1960; The differentiation of Pseudomonas from other gram-negative bacteria on the basis of arginine metabolism. Journal of Applied Bacteriology 23:37–52
    [Google Scholar]
  30. Vanderbilt A. S., Gaby N. S., Rodwell V. 1975; Intermediates and enzyme between α- ketoarginine and guanidinobutyrate in the l- arginine catabolic pathway of Pseudomonas putida. . Journal of Biological Chemistry 250:5322–5329
    [Google Scholar]
  31. Voellmy R., Leisinger TH. 1976; Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa . Journal of Bacteriology 128:722–729
    [Google Scholar]
  32. Voellmy R., Leisinger TH. 1978; Regulation of enzyme synthesis in the arginine biosynthetic pathway of Pseudomonas aeruginosa . Journal of General Microbiology 109:25–35
    [Google Scholar]
  33. Wu W. H., Morris D. R. 1973; Biosynthetic arginine decarboxylase from E. coli. Purification and properties. Journal of Biological Chemistry 248:1687–1695
    [Google Scholar]
/content/journal/micro/10.1099/00221287-116-2-381
Loading
/content/journal/micro/10.1099/00221287-116-2-381
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error