The Catabolism of Arginine by Free

Abstract

Mutants isolated from strain PAO1632 (HutAmi) were unable to utilize -arginine or -ornithine as the carbon source for growth. Arginine deiminase (AD), catabolic ornithine carbamoyltransferase (cOTC) and -acetylornithine 5-aminotrans-ferase (ACOAT) were present in the mutants but these enzymes were not induced to higher levels by exogenous -arginine. One group of mutants could utilize -ornithine but not -arginine and in these strains -arginine induced the synthesis of ACOAT but not AD or cOTC. The mutations of the arginine utilization-negative mutants were all in genes of the same transductional linkage group and mapped in the 45 to 50 min region of the chromosome. Revertants isolated on -arginine or -ornithine plates were derepressed for the synthesis of ACOAT. It is suggested that -arginine is normally catabolized by the wild-type strain via the arginine deiminase pathway and requires a threshold level of ACOAT. The regulatory factors controlling the functioning of the divergent arginine deiminase and arginine carboxylase pathways are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-116-2-371
1980-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/116/2/mic-116-2-371.html?itemId=/content/journal/micro/10.1099/00221287-116-2-371&mimeType=html&fmt=ahah

References

  1. Broman K., Lauwers N., Stalon V., Wiame J. M. 1978; Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their synthesis. Journal of Bacteriology 135:920–927
    [Google Scholar]
  2. Day M. 1975 Genetic studies with Pseudomonas aeruginosa strains Ph.D. thesis University of London.:
    [Google Scholar]
  3. Day M., Potts J. R., Clarke P. H. 1975; Location of genes for the utilization of acetamide, histidine and proline on the chromosome of Pseudomonas aeruginosa. Genetical Research 25:71–78
    [Google Scholar]
  4. Farin F., Clarke P. H. 1978; Positive regulation of amidase synthesis in Pseudomonas aeruginosa. Journal of Bacteriology 135:379–392
    [Google Scholar]
  5. Feist C. F., Hegeman G. D. 1969; Phenol and benzoate metabolism by Pseudomonas putida:regulation of tangential pathways. Journal of Bacteriology 100:869–877
    [Google Scholar]
  6. Haas D., Holloway B. W., Schamboeck A., Leisinger TH. 1977; The genetic organisation of arginine biosynthesis in Pseudomonas aeruginosa. Molecular and General Genetics 154:7–22
    [Google Scholar]
  7. Haas D., Evans R., Mercenier A., Simon J.-P., Stalon V. 1979; Genetic and physiological characterisation of Pseudomonas aeruginosamutants affected in the catabolic ornithine carbamoyltransferase. Journal of Bacteriology 139:713–720
    [Google Scholar]
  8. Holloway B. W., Krishnapillai V., Morgan A. 1979; Chromosomal genetics of Pseudomonas. Microbiological Reviews 43:73–102
    [Google Scholar]
  9. Jacoby W. B., Fredericks J. 1959; Pyrrolidine and putrescine metabolism: aminobutyraldehyde dehydrogenase. Journal of Biological Chemistry 234:2145–2150
    [Google Scholar]
  10. Mercenier A., Simon J.-P., Haas D., Stalon V. 1980; Catabolism of l-arginine by Pseudomonas aeruginosa. Journal of General Microbiology 116:381–389
    [Google Scholar]
  11. Miller D. L., Rodwell V. M. 1971; Metabolism of basic amino acids in Pseudomonas putida. Journal of Biological Chemistry 246:5053–5058
    [Google Scholar]
  12. Potts J. R. 1975 Histidine catabolism in Pseudomonas aeruginosa Ph. D. thesis University of London.:
    [Google Scholar]
  13. Rahman M., Clarke P. H. 1980; Genes and enzymes of lysine catabolism in Pseudomonas aeruginosa. Journal of General Microbiology 116:357–369
    [Google Scholar]
  14. Ramos F., Stalon V., Pierard A., Wiame J. M. 1967; The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochimica et biophysica acta 139:98–106
    [Google Scholar]
  15. Shoesmith J. G., Sherris J. C. 1960; Studies on the mechanism of arginine-activated motility in a Pseudomonas strain. Journal of General Microbiology 22:10–24
    [Google Scholar]
  16. Stalon V., Ramos F., PiÉrard A., Wiame J. M. 1967; The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochimica et biophysica acta 139:91–97
    [Google Scholar]
  17. Stalon V., Ramos F., PiÉrard A., Wiame J. M. 1972; Regulation of the catabolic ornithine carbamoyltransferase in Pseudomonas fluorescens. European Journal of Biochemistry 29:25–35
    [Google Scholar]
  18. Stalon V., Legrain C., Wiame J. M. 1977; Anabolic ornithine carbamoyltransferase of Pseudomonas. The bases of its functional specialization. European Journal of Biochemistry 74:319–327
    [Google Scholar]
  19. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  20. Voellmy R., Leisinger TH. 1972; Regulation of enzyme synthesis in the arginine system of Pseudomonas aeruginosa. Journal of General Microbiology 73:xiii
    [Google Scholar]
  21. Voellmy R., Leisinger Th. 1975; Dual role for N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine synthesis and arginine catabolism. Journal of Bacteriology 122:799–809
    [Google Scholar]
  22. Voellmy R., Leisinger TH. 1976; Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. Journal of Bacteriology 128:722–729
    [Google Scholar]
  23. Williams P. A., Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. Journal of Bacteriology 120:416–433
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-116-2-371
Loading
/content/journal/micro/10.1099/00221287-116-2-371
Loading

Data & Media loading...

Most cited Most Cited RSS feed