Formation, Isolation and Characterization of Trehalose Dimycolates from Grown on -Alkanes Free

Abstract

Rhodococcus erythropolis DSM 43215 produced a surface-active trehalose lipid whose formation was induced by n-alkanes to a maximum of 2*1 g l in a 501 batch culture on 2% (w/v) «-alkanes of chain length C to C. The glycolipid was extracted from the biomass with n-hexane and was purified by repeated chromatography on silica gel. It contained a,a-trehalose as the sole non-reducing sugar. The lipid moiety was characterized by C nuclear magnetic resonance spectroscopy and mass spectrometry and consisted predominantly of saturated long-chain a-branched ^-hydroxy fatty acids (mycolic acids) ranging from C3H03 to CH0, of which CH0 and CHO predominated. The molar ratio of trehalose to mycolic acids was 1:2. C nuclear magnetic resonance analysis of the hexamethyltrehalose obtained by saponification of the permethylated trehalose dimycolates revealed, with the aid of deuterium exchange, that the ester linkages of mycolic acids are to both primary alcohol groups at the C-6 and C-6' positions of the trehalose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-115-2-491
1979-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/115/2/mic-115-2-491.html?itemId=/content/journal/micro/10.1099/00221287-115-2-491&mimeType=html&fmt=ahah

References

  1. Asselineau C., Asselineau J. 1978; Trehalose-containing glycolipids. Progress in the Chemistry of Fats and other Lipids 16:59–99
    [Google Scholar]
  2. Barksdale L., Kim K. -S. 1977 Mycobacterium. Bacteriological Reviews 41:217–372
    [Google Scholar]
  3. Blanch H. W., Einsele A. 1973; The kinetics of yeast growth on pure hydrocarbons. Biotechnology and Bioengineering 15:861–877
    [Google Scholar]
  4. Bock H. 1979 Strukturaufklärung and Wirkungsweise eines Glykolipids aus Rhodococcus erythropolis bei n-Alkan-Fermentationen Ph.D. thesis Technische Universität Braunschweig, F.R.G:
    [Google Scholar]
  5. Bremser W., Ernst L., Franke B. 1978 Carbon-13 NMR Spectral Data Weinheim: Verlag Chemie;
    [Google Scholar]
  6. Brennan P. J., Lehane D. P., Thomas D. W. 1970; Acylglucoses of corynebacteria and mycobacteria. European Journal of Biochemistry 13:117–123
    [Google Scholar]
  7. Brobst K. M. 1972; Gas-liquid chromatography of trimethylsilyl derivatives. Methods in Carbohydrate Chemistry 6:3–8
    [Google Scholar]
  8. Brunner R. L. 1964; Determination of reducing value. Methods in Carbohydrate Chemistry 4:67–71
    [Google Scholar]
  9. Corey E. J., Chaykovsky M. 1962; Methyl-sulfinylcarbanion. Journal of the American Chemical Society 84:866–868
    [Google Scholar]
  10. Einsele A., Blanch H. W., Fiechter A. 1973; Agitation and aeration in hydrocarbon fermen-tations. Biotechnology and Bioengineering, Symposium4 pp. 455–466 Sikyta B., Prokop A., Novak M. Edited by New York: Wiley-Interscience;
    [Google Scholar]
  11. Goodfellow M., Alderson G. 1977; The actinomycete-genus Rhodococcus: a home for the ‘rhodochrous’ complex. Journal of General Microbiology 100:99–122
    [Google Scholar]
  12. Goodfellow M., Collins M. D., Minnikin D. 1976; Thin-layer chromatographic analysis of mycolic acid and other long-chain components in whole-organism methanolysates of coryneform and related taxa. Journal of General Microbiology 96:351–358
    [Google Scholar]
  13. Hakomori S. I. 1964; A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry 55:205–208
    [Google Scholar]
  14. Hisatsuka K., Nakahara T., Sano N., Yamada K. 1971; Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agricultural and Biological Chemistry 35:686–692
    [Google Scholar]
  15. Hisatsuka K., Nakahara T., Yamada K. 1972; Protein-like activator for n-alkane oxidation by Pseudomonas aeruginosa S7B1 . Agricultural and Biological Chemistry 36:1361–1369
    [Google Scholar]
  16. Hisatsuka K., Nakahara T., Minoda J., Yamada K. 1975; Capacity to oxidize n-alkane in EDTA-treated cells of Pseudomonas aeruginosa S7B1 . Agricultural and Biological Chemistry 39:999–1005
    [Google Scholar]
  17. Hisatsuka K., Nakahara T., Minoda J., Yamada K. 1977; Formation of protein-like activator for n-alkane oxidation and its properties. Agricultural and Biological Chemistry 41:445–450
    [Google Scholar]
  18. Hodge J. E., Hofreiter B. T. 1962; Determination of reducing sugars and carbohydrates. Methods in Carbohydrate Chemistry 1:380–394
    [Google Scholar]
  19. Ioneda T., Lenz M., Pudles J. 1963; Chemical constitution of a glycolipid from C. diphtheriae P.W. 8. Biochemical and Biophysical Research Communications 13:110–114
    [Google Scholar]
  20. Ioneda T., Lederer E., Rozanis J. 1970; Sur la structure des diesters de trehalose (‘cord factors’) produits par Nocardia asteroides et Nocardia rhodochrous . Chemistry and Physics of Lipids 4:375–392
    [Google Scholar]
  21. Kamerling J. P., Rosenberg D., Vliegenthart J. F. G. 1970; The determination of the configuration of the glycosidic link in oligosaccharides by P.M.R. spectroscopy of trimethylsilyl derivatives. Biochemical and Biophysical Research Communications 4:794–799
    [Google Scholar]
  22. Kanetsuna F., Bartoli A. 1972; A simple chemical method to differentiate Mycobacterium from Nocardia . Journal of General Microbiology 70:209–212
    [Google Scholar]
  23. Kochetkov N. K., Wulfson N. S., Chizhov O. S., Zolotarev B. M. 1963; Mass spectrometry of carbohydrate derivatives. Tetrahedron 19:2209–2224
    [Google Scholar]
  24. Krebs K. G., Heusser D., Wimmer H. 1967; Spriihreagentien. In Dünnschichtchromatographie pp. 813–859 Stahl E. Edited by Berlin: Springer Verlag;
    [Google Scholar]
  25. Kurobane I., Vining L. C., McInnes A. G. 1978; A new secalonic acid. Linkage between tetrahydroxanthone units determined from deu-terium isotope 13C chemical shifts. Tetrahedron Letters4633–4636
    [Google Scholar]
  26. Ladner H. K., Led J. J., Grant D. M. 1975; Deuterium isotope effects on 13C chemical shifts in amino acids and dipeptides. Journal of Magnetic Resonance 20:530–534
    [Google Scholar]
  27. Lederer E. 1967; Glycolipids of mycobacteria and related microorganisms. Chemistry and Physics of Lipids 1:294–315
    [Google Scholar]
  28. Lederer E. 1976; Cord factor and related trehalose esters. Chemistry and Physics of Lipids 16:91–106
    [Google Scholar]
  29. Minnikin D. E., Goodfellow M. 1976; Lipid composition in the classification and identification of nocardiae and related taxa. In The Biology of the Nocardiae pp. 160–219 Goodfellow M., Brownell G. H., Serrano J. A. Edited by London: Academic Press;
    [Google Scholar]
  30. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer chromatographic analysis of whole-organism methanol- ysates. Journal of General Microbiology 88:200–204
    [Google Scholar]
  31. Okazaki H., Sugino H., Kanzaki T., Fukuda H. 1969; l-Glutamic acid fermentation. Part VI. Structure of a sugar lipid produced by Brevibacterium thiogenitalis . Agricultural and Biological Chemistry 33:764–770
    [Google Scholar]
  32. Radford T., De Jongh D. C. 1972; Carbohydrates. In Biochemical Application of Mass Spectrometry pp. 313–350 Waller G. R. Edited by New York: Wiley-Interscience;
    [Google Scholar]
  33. Rapp P., Wagner F. 1976; Formation of trehalose lipid by Nocardia rhodochrous sp. grown on n-alkane. In V. International Fermentation Symposium, Abstract of Papers p. 133 Dellweg H. Edited by Berlin: Verlag Versuchsund Lehranstalt für Spirituosenfabrikation und Fermentationstechnologie im Institut für Gärungsgewerbe und Biotechnologie;
    [Google Scholar]
  34. Rapp P., Bock H., Urban E., Wagner F., Gebetsberger W., Schulz W. 1977; Mikrobielle Bildung eines Trehaloselipids und seine Anwendung in Modellversuchen zum Tensid- fluten von Erdöllagerstätten. Dechema-Monographien 81:177–186
    [Google Scholar]
  35. Schilling G., Henkels W. -D., Künstler K., Weinges K. 1975; Zur Konstitutionsermittlung der C15-Iridoidglucoside und ihrer natürlichen Derivate mit Hilfe der 13C-NMR-Spektroskopie. Justus Liebigs Annalen der Chemie230–239
    [Google Scholar]
  36. Senn M., Ioneda T., Pudles J., Lederer E. 1967; Spectrometrie de masse de glycolipides. European Journal of Biochemistry 1:353–356
    [Google Scholar]
  37. Stothers J. B. 1972 Carbon-13 NMR Spectroscopy London: Academic Press;
    [Google Scholar]
  38. Suzuki T., Tanaka K., Matsubara I., Kinoshita S. 1969; Trehalose lipid and α-branched-β-hydroxy fatty acid formed by bacteria grown on n-alkanes. Agricultural and Biological Chemistry 33:1619–1627
    [Google Scholar]
  39. Wagner F., Rapp P., Lindörfer W., Schulz W., Gebetsberger W. 1978; Verfahren zum Fluten von Erdöllagerstätten mittels Dispersionen nichtionogener grenzflächenaktiver Stoffe in Wasser. German Patents DE-2646505, DE-2646506, DE-2646507
    [Google Scholar]
  40. Yamaguchi M., Sato A., Yukuyama A. 1976; Microbial production of sugar-lipids. Chemistry and Industry741–742
    [Google Scholar]
  41. Yano I., Furukawa J., Kusunose M. 1971; Occurence of acylated trehaloses in Nocardia . Journal of General and Applied Microbiology 17:329–334
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-115-2-491
Loading
/content/journal/micro/10.1099/00221287-115-2-491
Loading

Data & Media loading...

Most cited Most Cited RSS feed