1887

Abstract

Linoleic acid, but not stearic acid, inhibited the growth of NCTC 8325. Growth inhibition was associated with an increase in the permeability of the bacterial membrane. The presence of a plasmid conferring resistance to penicillin (PC plasmid, e.g. pI I) increased the growth inhibitory and membrane permeability effects of linoleic acid. Under growth inhibitory conditions, linoleic acid was incorporated into the lipid of both PC plasmid-containing and PC plasmid-negative bacteria and there was little difference between these cultures in the uptake or fate of linoleic acid. Experiments using a glycerol auxotroph of suggested that free linoleic acid, rather than lipid containing this acid, inhibits growth. Linoleic acid probably inhibits growth by increasing the permeability of the bacterial membrane as a result of its surfactant action, and the presence of the PC plasmid increases these effects.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-115-1-233
1979-11-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/115/1/mic-115-1-233.html?itemId=/content/journal/micro/10.1099/00221287-115-1-233&mimeType=html&fmt=ahah

References

  1. Altenbern R. A. 1977a; Effect of exogenous fatty acids on growth and enterotoxin B formation by Staphylococcus aureus 14458 and its membrane mutant. Canadian Journal of Microbiology 23:389–397
    [Google Scholar]
  2. Altenbern R. A. 1977b; Cerulenin-inhibited cells of Staphylococcus aureus resume growth when supplemented with either a saturated or an unsaturated fatty acid. Antimicrobial Agents and Chemotherapy 11:574–576
    [Google Scholar]
  3. Borst P., Loos J. A., Christ E. J., Slater E. C. 1962; Uncoupling activity of long-chain fatty acids. Biochimica et biophysica acta 62:509–518
    [Google Scholar]
  4. Butcher G. W., King G., Dyke K. G. H. 1976; Sensitivity of Staphylococcus aureus to unsaturated fatty acids. Journal of General Microbiology 94:290–296
    [Google Scholar]
  5. Dervichian D. G. 1954; The surface properties of fatty acids and allied substances. In Chemistry of Fats and Other Lipids 2 pp. 193–242 Holman R. T., Lundberg W. O., Malkin T. Edited by London: Academic Press;
    [Google Scholar]
  6. Dittmer J. C., Lester R. L. 1964; A simple specific spray for detection of phospholipids on thin layer chromatograms. Journal of Lipid Research 5:126–127
    [Google Scholar]
  7. Eisenthal R., Cornish-Bowden A. 1974; The direct linear plots-a new graphical procedure for estimating enzyme kinetic parameters. Biochemical Journal 139:715–720
    [Google Scholar]
  8. Freese E., Sheu C. W., Galliers E. 1973; Function of lipophilic acids as antimicrobial food additives. Nature; London: 241321–325
    [Google Scholar]
  9. Galbraith H., Miller T. B. 1973a; Effect of metal cations and pH on the antibacterial activity and uptake of long-chain fatty acids. Journal of Applied Bacteriology 36:635–646
    [Google Scholar]
  10. Galbraith H., Miller T. B. 1973b; Physico-chemical effects of long-chain fatty acids on bacterial cells and their protoplasts. Journal of Applied Bacteriology 36:647–658
    [Google Scholar]
  11. Galbraith H., Miller T. B. 1973c; Effect of long-chain fatty acids on bacterial respiration and amino acid uptake. Journal of Applied Bacteriology 36:659–675
    [Google Scholar]
  12. Galbraith H., Miller T. B., Paton A. M., Thompson J. K. 1971; Antibacterial activity of long-chain fatty acids and their reversal with Ca2+, Mg2+, ergocalciferol and cholesterol. Journal of Applied Bacteriology 34:803–813
    [Google Scholar]
  13. Gale E. F., Folkes J. P. 1967; Effects of lipids on the accumulation of certain amino acids by Staphylococcus aureus . Biochimica et biophysica acta 144:461–466
    [Google Scholar]
  14. Gale E. F., Llewellin J. M. 1971; Effect of unsaturated fatty acids on aspartate transport in Staphylococcus aureus and on staphylococcal lipid monolayers. Biochimica et biophysica acta 233:237–242
    [Google Scholar]
  15. Hancock R., Park J. T. 1958; Cell wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature; London: 1811050–1052
    [Google Scholar]
  16. Hedström S. A. 1975; Lipolytic activity of Staphylococcus aureus strains from cases of human chronic osteomyelitis and other infections. Acta pathologica et microbiologica scandinavica B83:285–292
    [Google Scholar]
  17. Hülsmann W. C., Elliott W.B, Slater E. C. 1960; Nature and mechanism of action of uncoupling agents present in mitochrome preparations. Biochimica et biophysica acta 39:267–276
    [Google Scholar]
  18. Johnston L. H., Dyke K. G. H. 1971; Stability of penicillinase plasmids in Staphylococcus aureus . Journal of Bacteriology 107:63–73
    [Google Scholar]
  19. Kaye G. W. C., Laby T. H. 1966 Tables of Physical and Chemical Constants, 13th edn. London: Longmans;
    [Google Scholar]
  20. Mindich L. 1971; Induction of Staphylococcus aureus lactose permease in the absence of glycero-lipid synthesis. Proceedings of the National Academy of Sciences of the United States of America 68:420–424
    [Google Scholar]
  21. Mitsuhashi S., Hashimoto H., Kono M., Morimura M. 1965; Drugresistanceof staphylococci. II. Joint elimination and joint transduction of penicillinase production and resistance to macrolide antibiotics. Journal of Bacteriology 89:988–992
    [Google Scholar]
  22. Nieman C. 1954; Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriological Reviews 18:147–163
    [Google Scholar]
  23. Nikaido H. 1976; Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochimica et biophysica acta 433:118–132
    [Google Scholar]
  24. Novick R. P. 1963; Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus . Journal of General Microbiology 33:121–136
    [Google Scholar]
  25. Peters R. A. 1931; Interfacial tension and proton concentration. Proceedings of the Royal Society 133A:140–154
    [Google Scholar]
  26. Postma P. W., Roseman S. 1976; The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochimica et biophysica acta 457:213–257
    [Google Scholar]
  27. Pressman B. C., Lardy H. A. 1956; Effect of surface active agents on the latent ATPase of mitochondria. Biochimica et biophysica acta 21:458–466
    [Google Scholar]
  28. Roantree R. J., Kuo T., MacPhee D. G., Stocker B. A. D. 1969; The effect of various rough lesions in Salmonella typhimurium upon sensitivity to penicillins. Clinical Research 17:157
    [Google Scholar]
  29. Salton M. R. J. 1951; The adsorption of cetyltrimethylammonium bromide by bacteria, its action in releasing cellular constituents and its bactericidal effects. Journal of General Microbiology 5:391–404
    [Google Scholar]
  30. Schlecht S., Schmidt G. 1970; Möglichkeiten zur Differenzierung von Salmonella-R-Formen mittels Antibiotica und antibakterieller Farbstoffe. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Originate 212:505–511
    [Google Scholar]
  31. Schmidt G., Schlecht S., Westphal O. 1969; Investigations on the classification of Salmonella R forms. 3. Communication: Classification of S. minnesota mutants by chemical agents. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Originate 212:88–96
    [Google Scholar]
  32. Sheu C. W., Freese E. 1973; Lipopolysaccharide layer protection of Gram-negative bacteria against inhibition by long-chain fatty acids. Journal of Bacteriology 115:869–875
    [Google Scholar]
  33. Sheu C. W., Salomon D., Simmons J. L., Sreevalson T., Freese E. 1975; Inhibitory effects of lipophilic acids and related compounds on bacteria and mammalian cells. Antimicrobial Agents and Chemotherapy 7:349–363
    [Google Scholar]
  34. Smith R., Tanford C. 1973; Hydrophobicity of long chain n-alkyl carboxylic acids as measured by their distribution between heptane and aqueous solutions. Proceedings of the National Academy of Sciences of the United States of America 70:289–293
    [Google Scholar]
  35. Váczi L., Rédai I., Réthy A. 1967; Changes in the fatty acid composition of Staphylococcus aureus under various cultural conditions. Acta microbiologica Academiae scientiarum hungaricae 14:293–298
    [Google Scholar]
  36. White D. C., Frerman F. E. 1967; Extraction, characterization and cellular localization of the lipids of Staphylococcus aureus . Journal of Bacteriology 94:1854–1867
    [Google Scholar]
  37. White D. C., Frerman F. E. 1968; Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of membrane bound electron transport system. Journal of Bacteriology 95:2198–2209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-115-1-233
Loading
/content/journal/micro/10.1099/00221287-115-1-233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error