1887

Abstract

Plasmids were isolated from strains of predominantly serogroup 135, obtained from soybean nodules collected at 15 sites in Nebraska, U.S.A. In addition to their serotype, these strains were indistinguishable from strain 311b135 in growth rate, sensitivity to phage Rhj781, antibiotic sensitivities, general colony characteristics and rates of nitrogen fixation per plant. All strains occupied soil habitats with similar characteristics, including a high pH (7·2 to 8·3), relatively high conductivity (0·04 to 0·32 mS), relatively high sodium saturation (0·32 to 12·7%), low iron content (3·2 to 14·8 p.p.m.) and low manganese content (5·1 to 18·7 p.p.m.). However, agarose gel electrophoresis analysis of plasmids enabled subdivision of these extra-slow-growing strains into four groups on the basis of differences in plasmid number and size. These strains carried combinations of two or more of four plasmids, ranging in mass from 49 to 118 megadaltons and comprising approximately 20% of the total DNA per cell. Biological and symbiotic data, along with plasmid analysis, were useful in identifying a wild-type strain (RJ23A) that shows potential as a soybean inoculant in alkaline soils.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-114-2-257
1979-10-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/114/2/mic-114-2-257.html?itemId=/content/journal/micro/10.1099/00221287-114-2-257&mimeType=html&fmt=ahah

References

  1. Bak A.L., Christiansen C., Stenderup A. 1970; Bacterial genome sizes determined by DNA renaturation studies. Journal of General Microbiology 64:377–380
    [Google Scholar]
  2. Bechet M., Guillaume J.B. 1978; Mise en évidence d’ADN extrachromosomique chez Rhizobium meliloti. Canadian Journal of Microbiology 24:960–966
    [Google Scholar]
  3. Black C.A., Evans D.D., White J.L., Ensminger L.E., Clark F.E. (editors) 1965 Methods of Soil Analysis: Chemical and Microbiological Properties part 2, pp. 771–1572 Madison, Wisconsin: American Society of Agronomy.;
    [Google Scholar]
  4. Bollum F.J. 1968; Filter paper disk techniques for assaying radioactive macromolecules. Methods in Enzymology 12B:169–173
    [Google Scholar]
  5. Burkardt H.J., Mattes R., Puhler A., Heumann W. 1978; Electron microscopy and computerized evaluation of some partially de-natured group P resistance plasmids. Journal of General Microbiology 105:51–62
    [Google Scholar]
  6. Caldwell B.E., Vest G. 1970; Effects of Rhizobium japonicum strains on soybean yields. Crop Science 10:19–21
    [Google Scholar]
  7. Caldwell B.E., Weber D.F. 1970; Distribution of Rhizobium japonicum serogroups in soybean nodules as affected by planting dates. Agronomy Journal 62:12–14
    [Google Scholar]
  8. Carter K.R., Jennings N.T., Hanus J., Evans H.J. 1978; Hydrogen evolution and uptake by nodules of soybeans inoculated with different strains of Rhizobium japonicum. Canadian Journal of Microbiology 24:307–311
    [Google Scholar]
  9. Cole M.A., Elkan G.H. 1973; Transmissible resistance to penicillin G, neomycin, and chlor-amphenicol in Rhizobium japonicum. Antimicrobial Agents and Chemotherapy 4:248–253
    [Google Scholar]
  10. Currier T.C., Nester E.W. 1976; Isolation of covalently closed circular DNA of high molecular weight from bacteria. Analytical Biochemistry 76:431–441
    [Google Scholar]
  11. Damirgi S.M., Frederick L.R., Anderson I.C. 1967; Serogroups of Rhizobium japonicum in soybean nodules as affected by soil types. Agronomy Journal 59:10–12
    [Google Scholar]
  12. Drapeau R., Fortin J.A., Gagnon C. 1973; Antifungal activity of Rhizobium. Canadian Journal of Botany 51:681–682
    [Google Scholar]
  13. Eskew D.L., Schrader L.E. 1977; Effect of rj1 rj1 (non-nodulating) soybeans on nodulation of near isogenic Rj1 Rj1 plants in nutrient culture. Canadian Journal of Microbiology 23:988–993
    [Google Scholar]
  14. Gross D.C., Vidaver A.K. 1978; Bacteriocin-like substances produced by Rhizobium japonicum and other slow-growing rhizobia. Applied and Environmental Microbiology 36:936–943
    [Google Scholar]
  15. Ham G.E., Frederick L.R., Anderson I.C. 1971; Serogroups of Rhizobium japonicum in soybean nodules sampled in Iowa. Agronomy Journal 63:69–72
    [Google Scholar]
  16. Hansen J.B., Olsen R.H. 1978; Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. Journal of Bacteriology 135:227–238
    [Google Scholar]
  17. Herridge D.F., Roughley R.J. 1975; Variation in colony characteristics and symbiotic effectiveness of Rhizobium. Journal of Applied Bacteriology 38:19–27
    [Google Scholar]
  18. Johnson H.W., Means U.M. 1963; Serological groups of Rhizobium japonicum recovered from nodules of soybeans (Glycine max) in field soils. Agronomy Journal 55:269–271
    [Google Scholar]
  19. Johnson H.W., Means U.M., Weber C.R. 1965; Competition for nodule sites between strains of Rhizobium japonicum applied as inoculum and strains in the soil. Agronomy Journal 51:179–185
    [Google Scholar]
  20. Johnston A.W.B., Beynon J.L., Buchanan-Wollaston A.V., Setchell S.M., Hirsch P.R., Beringer J.E. 1978; High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature; London: 276634–636
    [Google Scholar]
  21. Klein G.E., Jemison P., Haak R.A., Matthysse A.G. 1975; Physical evidence of a plasmid in Rhizobium japonicum. Experientia 31:532–533
    [Google Scholar]
  22. Klucas R.V. 1974; Studies on soybean nodule senescence. Plant Physiology 54:612–616
    [Google Scholar]
  23. Klucas R.V., Arp D. 1977; Physiological and biochemical studies on senescing tap root nodules of soybeans. Canadian Journal of Microbiology 23:1426–1432
    [Google Scholar]
  24. Kowalski M., Ham G.E., Frederick L.R., Anderson I.C. 1974; Relationship between strains of Rhizobium japonicum and their bacteriophages from soil and nodules of field-grown soybeans. Soil Science 118:221–228
    [Google Scholar]
  25. Kuykendall L.D., Elkan G.H. 1976; Rhizobium japonicum derivatives differing in nitrogen-fixing efficiency and carbohydrate utilization. Applied and Environmental Microbiology 32:511–519
    [Google Scholar]
  26. Luyindula N., Tshitenge G., Lurquin P., Ledoux L. 1975; Etude des plasmides de Rhizobium japonicum. Archives internationales de physiologie et de biochimie 83:199–200
    [Google Scholar]
  27. Maier R.J., Brill W.J. 1978; Mutant strains of Rhizobium japonicum with increased ability to fix nitrogen for soybean. Science 201:448–450
    [Google Scholar]
  28. Meyers J.A., Sanchez D., Elwell L.P., Falkow S. 1976; Simple agarose gel electrophoretic method for the identification and charac-terization of plasmid deoxyribonucleic acid. Journal of Bacteriology 127:1529–1537
    [Google Scholar]
  29. Meynell G.G., Meynell E. 1970 Theory and Practice in Experimental Bacteriology, 2nd edn.. Cambridge: Cambridge University Press.;
    [Google Scholar]
  30. Nuti M.P., Ledeboer A.M., Lepidi A.A., Schilperoort R.A. 1977; Large plasmids in different Rhizobium species. Journal of General Microbiology 100:241–248
    [Google Scholar]
  31. Pedersen W.L., Chakrabarty K., Klucas R.V., Vidaver A.K. 1978; Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Applied and Environmental Microbiology 35:129–135
    [Google Scholar]
  32. Smith R.S., Miller R.H. 1974; Interaction between Rhizobium japonicum and soybean rhizosphere bacteria. Agronomy Journal 66:564–567
    [Google Scholar]
  33. Thompson L.M., Troeh F.R. 1973 Soils and Soil Fertility, 3rd edn. pp. 203–204 New York: McGraw-Hill.;
    [Google Scholar]
  34. Tshitenge G., Luyindula N., Lurquin P.F., Ledoux L. 1975; Plasmid deoxyribonucleic acid in Rhizobium vigna and Rhizobium trifolii. Biochimica et biophysica acta 414:357–361
    [Google Scholar]
  35. Upchurch R.G., Elkan G.H. 1977; Comparison of colony morphology, salt tolerance and effectiveness in Rhizobium japonicum. Canadian Journal of Microbiology 23:1118–1122
    [Google Scholar]
  36. Vest G., Weber D.F., Sloger C. 1973; Nodulation and nitrogen fixation. In Soybeans: Improvement, Production, and Uses pp. 353–390 Caldwell B.E. Edited by Madison, Wisconsin: American Society of Agronomy.;
    [Google Scholar]
  37. Vidaver A.K. 1967; Synthetic and complex media for the rapid detection of fluorescence of phytopathogenic pseudomonads: effect of the carbon source. Applied Microbiology 15:1523–1524
    [Google Scholar]
  38. Vincent J.M. 1970 A Manual for the Practical Study of the Root Nodule Bacteria. Oxford: Blackwell Scientific Publications.;
    [Google Scholar]
  39. Vincent J.M. 1977; Rhizobium: general microbiology. In A Treatise on Dinitrogen Fixation Section III: Biology, pp. 277–366 Hardy R.W.F., Silver W.S. Edited by New York: John Wiley.;
    [Google Scholar]
  40. Washington J.A. II Barry A.L. 1974; Dilution test procedures. In Manual of Clinical Microbiology, 2nd edn. pp. 410–417 Lennette E.H., Spaulding E.H., Truant J.P. Edited by Washington: American Society for Microbiology.;
    [Google Scholar]
  41. Weber D.F., Miller V.L. 1972; Effect of soil temperature on Rhizobium japonicum serogroup distribution in soybean nodules. Agronomy Journal 64:796–798
    [Google Scholar]
  42. Zurkowski W., Lorkiewicz Z. 1976; Plasmid deoxyribonucleic acid in Rhizobium trifolii. Journal of Bacteriology 128:481–484
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-114-2-257
Loading
/content/journal/micro/10.1099/00221287-114-2-257
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error