1887

Abstract

Summary: A series of 76 mutants of A3(2) specifically blocked in the synthesis of the binaphthoquinone antibiotic actinorhodin were classified into seven phenotypic classes on the basis of antibiotic activity, accumulation of pigmented precursors or shunt products of actinorhodin biosynthesis, and cosynthesis of actinorhodin in pairwise combinations of mutants. The polarity of cosynthetic reactions, and other phenotypic properties, allowed six of the mutant classes to be arranged in the most probable linear sequence of biosynthetic blocks. One member of each mutant class was mapped unambiguously to the chromosomal linkage map in the short segment between the and loci, suggesting that structural genes for actinorhodin biosynthesis may form an uninterrupted cluster of chromosomal genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-114-1-35
1979-09-01
2021-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/114/1/mic-114-1-35.html?itemId=/content/journal/micro/10.1099/00221287-114-1-35&mimeType=html&fmt=ahah

References

  1. Bibb M.J. 1978 Genetical and physical studies of a Streptomyces coelicolor plasmid. Ph.D. thesis University of East Anglia, Norwich:
    [Google Scholar]
  2. Bibb M.J., Freeman R.F., Hopwood D.A. 1977; Physical and geneticalcharacterisation of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Molecular and General Genetics 154:155–166
    [Google Scholar]
  3. Bibb M.J., Ward J.M., Hopwood D.A. 1978; Transformation of plasmid DNA into Streptomyces at high frequency. Nature; London: 274398–400
    [Google Scholar]
  4. Birch A.J. 1967; Biosynthesis of polyketides and related compounds. Science 156:202–206
    [Google Scholar]
  5. Brockmann H., Zeeck A., Merwe K., van Der, Müller W. 1966; Die Konstitution des Actinorhodins. Justus Liebigs Annalen der Chemie 698:209–229
    [Google Scholar]
  6. Carbaz R., Ettinger L., Gäumann E., Kalvoda J., Keller-Schierlein W., Kradolfer F., Manukian B.K., Neipp L., Prelog V., Reusser P., Zähner H. 1957; Stoffwechsel-Produkte von Actinomyceten: Granaticin. Helvetica chimica acta 40:1262–1269
    [Google Scholar]
  7. Hoeksema H., Krueger W.C. 1976; Kala-fungin. II. Chemical transformations and the absolute configuration. Journal of Antibiotics 29:704–709
    [Google Scholar]
  8. Hopwood D.A. 1967; Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriological Reviews 31:373–403
    [Google Scholar]
  9. Hopwood D.A. 1978; Extrachromosomally determined antibiotic production. Annual Review of Microbiology 32:373–392
    [Google Scholar]
  10. Hopwood D.A., Merrick M.J. 1977; Genetics of antibiotic production. Bacteriological Reviews 41:595–635
    [Google Scholar]
  11. Hopwood D.A., Chater K.F., Dowding J.E., Vivian A. 1973; Advances in Streptomyces coelicolor genetics. Bacteriological Reviews 37:371–405
    [Google Scholar]
  12. Kirby R., Hopwood D.A. 1977; Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). Journal of General Microbiology 98:239–252
    [Google Scholar]
  13. Kirby R., Wright L.F., Hopwood D.A. 1975; Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature; London: 254265–267
    [Google Scholar]
  14. Kutzner H.J., Waksman S.A. 1959; Streptomyces coelicolor Müller and Streptomyces violaceo-ruber Waksman and Curtis, two distinctly different organisms. Journal of Bacteriology 78:528–538
    [Google Scholar]
  15. Merrick M.J. 1976; A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. Journal of General Microbiology 96:299–315
    [Google Scholar]
  16. Ōmura S., Tanaka H., Okada Y., Marumo H. 1976; Isolation and structure of nanaomycin D, an enantiomer of the antibiotic kalafungin. Journal of the Chemical Society, Chemical Communications320–321
    [Google Scholar]
  17. Rudd B.A.M. 1978 Genetics of pigmented secondary metabolites in Streptomyces coelicolor. Ph.D. thesis University of East Anglia, Norwich:
    [Google Scholar]
  18. SchrÖder K., Floss H.G. 1978; Biosynthesis of α-naphthocyclinone. Journal of Organic Chemistry 43:1438–1441
    [Google Scholar]
  19. Snipes C.E., Chang C., Floss H.G. 1979; Biosynthesis of the antibiotic granaticin. Journal of the American Chemical Society 101:701–706
    [Google Scholar]
  20. Tanaka H., Koyama Y., Nagai T., Marumo H., Ōmura S. 1975; Nanaomycins, new anti-biotics produced by a strain of Streptomyces. II. Structure and biosynthesis. Journal of Antibiotics 28:868–875
    [Google Scholar]
  21. Tsuji N., Kobayashi M., Terui Y., Tori K. 1976; The structure of griseusins A and B, new isochromanequinone antibiotics. Tetrahedron 32:2207–2210
    [Google Scholar]
  22. Wright L.F., Hopwood D.A. 1976a; Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). Journal of General Microbiology 95:96–106
    [Google Scholar]
  23. Wright L.F., Hopwood D.A. 1976b; Actinorhodin is a chromosomally determined antibiotic in Streptomyces coelicolor A3(2). Journal of General Microbiology 96:289–297
    [Google Scholar]
  24. Zeeck A., Mardin M. 1974; Isolierung und Konstitution von α-Naphthocyclinon. Justus Liebigs Annalen der Chemie1063–1099
    [Google Scholar]
  25. Zeeck A., Zähner H., Mardin M. 1974; Isolierung und Konstitution der Isochroman-chinon-Antibiotica β und γ-Naphthocyclinon. Justus LiebigsAnnalen der Chemie1100–1125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-114-1-35
Loading
/content/journal/micro/10.1099/00221287-114-1-35
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error