Influence of Oxygen Tension on Nitrate Reduction by a sp. Growing in Chemostat Culture Free

Abstract

SUMMARY: At dissolved oxygen tensions of 15 mmHg (2 kPa) and below, nitrate-limited continuous cultures of K312 synthesized nitrate reductase (NR) and nitrite reductase (NiR) and excreted ammonia. Under anaerobic conditions over 60% of the nitrate-nitrogen utilized was excreted as ammonia. In contrast, carbon-limited cultures excreted nitrite at dissolved oxygen tensions of 15 mmHg or below and synthesized NR but not NiR. Ammonia repressed neither NR nor NiR synthesis. These observations indicate that below a critical oxygen tension of 15 mmHg K312 utilizes oxygen and nitrate as electron acceptors. This oxygen tension correlates well with the critical oxygen tension observed for a change from oxidative to fermentative metabolism in cultures of . The product of dissimilatory nitrate reduction is ammonia in nitrate-limited cultures but principally nitrite in carbon-limited (nitrate excess) cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-112-2-379
1979-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/112/2/mic-112-2-379.html?itemId=/content/journal/micro/10.1099/00221287-112-2-379&mimeType=html&fmt=ahah

References

  1. Brown C. M., Rose A. H. 1969; Fatty acid composition of Candida utilis as affected by growth temperature and dissolved oxygen tension. Journal of Bacteriology 99:371–378
    [Google Scholar]
  2. Brown C. M., Macdonald-Brown D. S., Stanley S. O. 1972; Inorganic nitrogen metabolism in marine bacteria. Nitrogen assimilation in some marine pseudomonads. Journal of the Marine Biological Association of the United Kingdom 52:793–804
    [Google Scholar]
  3. Brown C. M., Macdonald-Brown D. S., Stanley S. O. 1975; Inorganic nitrogen metabolism in marine bacteria. Nitrate uptake and reduction in a marine pseudomonad. Marine Biology 31:7–13
    [Google Scholar]
  4. Chang J. P., Morris J. G. 1962; Studies on the utilization of nitrate by Micrococcus denitrificans . Journal of General Microbiology 29:301–310
    [Google Scholar]
  5. Cole J. A. 1978; The rapid accumulation of large quantitities of ammonia during nitrite reduction by Escherichia coli . FEMS Microbiology Letters 4:327–329
    [Google Scholar]
  6. Cole J. A., Coleman K. J., Compton B. E., Kavenagh B. M., Keevil C. W. 1974; Nitrite and ammonia assimilation by anaerobic continuous cultures of Escherichia coli . Journal of General Microbiology 85:11–22
    [Google Scholar]
  7. Dunn G. M., Herbert R. A., Brown C. M. 1978; Physiology of denitrifying bacteria from tidal mudflats in the River Tay. In Physiology and Behaviour of Marine Organisms pp 135–140 Edited by McLusky D. S., Berry A. J. Oxford and New York: Pergamon Press;
    [Google Scholar]
  8. Evans C. G. T., Herbert D., Tempest D. W. 1970; The continuous culture of microorganisms. 2. Construction of a chemostat. Methods in Microbiology 2:277–327
    [Google Scholar]
  9. Guerrero M. G., Vega J. M., Leadbetter E., Losada M. 1973; Preparation and characterisation of a soluble nitrate reductase from Azotobacter chroococcum . Archiv für Mikrobiologie 91:287–304
    [Google Scholar]
  10. Hadjipetrou L. P., Stouthamer A. H. 1965; Energy production during nitrate respiration by Aerobacter aerogenes . Journal of General Microbiology 38:29–34
    [Google Scholar]
  11. Harrison D. E. F. 1972; Physiological effects of dissolved oxygen tension and redox potential on growing populations of micro-organisms. Journal of Applied Chemistry and Biotechnology 22:417–440
    [Google Scholar]
  12. Inderlied C. B., Delwiche E. A. 1973; Nitrate reduction and the growth of Veillonella alcalescens . Journal of Bacteriology 114:1206–1212
    [Google Scholar]
  13. Justin P., Kelly D. P. 1978; Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous culture. Journal of General Microbiology 107:131–137
    [Google Scholar]
  14. Kemp J. D., Atkinson D. E. 1966; Nitrite reduction of Escherichia coli specific for reduced nicotinamide adenine dinucleotide. Journal of Bacteriology 92:628–634
    [Google Scholar]
  15. Lowe R. H., Evans H. J. 1964; Preparation and some properties of a soluble nitrate reductase from Rhizobium japonicum . Biochimica et biophysica acta 85:377–389
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  17. Payne W. J. 1973; Reduction of nitrogenous oxides by microorganisms. Bacteriological Reviews 37:409–452
    [Google Scholar]
  18. Pichinoty F. 1973; La reduction bactérienne de composes oxygénes mineraux de l’azote. Bulletin de l’Institut Pasteur 71:317–395
    [Google Scholar]
  19. Prakasch O., Sadana J. C. 1973; Metabolism of nitrate in Achromobacter fischeri . Canadian Journal of Microbiology 19:15–25
    [Google Scholar]
  20. Schulp J. A., Stouthamer A. H. 1970; The influence of oxygen, glucose and nitrate upon the formation of nitrate reductase and the respiratory system in Bacillus licheniformis . Journal of General Microbiology 64:195–205
    [Google Scholar]
  21. Showe M. K., de Moss J. A. 1968; Localisation and regulation of nitrate reductase in Escherichia coli . Journal of Bacteriology 95:1305–1313
    [Google Scholar]
  22. Sinclair P. R., White D. C. 1970; Effect of nitrate, fumarate and oxygen on the formation of membrane-bound electron transport system of Haemophilus parainfluenzae . Journal of Bacteriology 101:365–372
    [Google Scholar]
  23. Stouthamer A. H. 1977; Energetic aspects of the growth of microorganisms. Symposia of the Society for General Microbiology 27:285–315
    [Google Scholar]
  24. Thauer R. K., Jungermann K., Decker K. 1977; Energy conversion in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180
    [Google Scholar]
  25. Van’t Riet J., Stouthamer A. H., Planta R. J. 1968; Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes . Journal of Bacteriology 96:1455–1464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-112-2-379
Loading
/content/journal/micro/10.1099/00221287-112-2-379
Loading

Data & Media loading...

Most cited Most Cited RSS feed