1887

Abstract

Crude extracts of strain 7000 contained enzymes of the Entner–Doudoroff and pentose phosphate pathways. No phosphofructokinase (EC 2.7.1.11) activity and only a low activity of fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) were found, suggesting that the Embden–Meyerhof–Parnas pathway was not physiologically important in this strain.

Independent carbohydrate-negative mutants of were isolated and characterized as deficient in glucokinase ( EC 2.7.1.2), fructose uptake (), the Entner–Doudoroff pathway () and pyruvate carboxylase ( EC 6.4.1.1). Glucokinase was essential for glucose phosphorylation in and was also required for growth on sucrose. The mutant was impaired in growth on all hexoses tested except galactose, suggesting that the ED pathway was the major pathway used by for the catabolism of these sugars. Galactose may be catabolized via a different pathway, possibly involving an NADP-linked galactose dehydrogenase. Pyruvate carboxylase was an important anaplerotic enzyme in required for growth on all carbon sources tested, except succinate.

All the mutants, including a double mutant, formed an effective symbiosis on red clover, suggesting that neither glucose, fructose nor sucrose are used by the bacteroids to provide ATP and reductant for nitrogen fixation. The bacteroids probably receive a supply of tricarboxylic acid cycle intermediates from the plant cytosol, and these may be their major source of energy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-112-1-77
1979-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/112/1/mic-112-1-77.html?itemId=/content/journal/micro/10.1099/00221287-112-1-77&mimeType=html&fmt=ahah

References

  1. Anderson R. L., Kamal M. Y. 1966; Glucokinase. II. Aerobacter aerogenes. Methods in Enzymology 9:388–392
    [Google Scholar]
  2. Bach M. K., Magee W. E., Burris R. H. 1958; Translocation of photosynthetic products to soybean nodules and their role in nitrogen fixation. Plant Physiology 33:118–124
    [Google Scholar]
  3. Bergersen F.J. 1970; The quantitative relationship between nitrogen fixation and the acetylene-reduction assay. Australian Journal of Biological Sciences 23:1015–1025
    [Google Scholar]
  4. Bergersen F. J. 1977; Physiological chemistry of dinitrogen fixation by legumes. In A Treatise on Dinitrogen Fixation. Section III: Biology pp. 519–556 Edited by Hardy R. W. F., Silver W. S. New York: Wiley-Interscience;
    [Google Scholar]
  5. Bergersen F. J., Turnerg G. L. 1967; Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochimica et biophysica acta 141:507–515
    [Google Scholar]
  6. Bethlenfalvay G. J., Phillips D. A. 1977; Photosynthesis and symbiotic nitrogen fixation in Phaseolus vulgaris L. In Genetic Engineering for Nitrogen Fixation pp. 401–408 Edited by Hollaender A. New York & London: Plenum Press;
    [Google Scholar]
  7. Blevins W. T., Feary T. W., Phibbs P. V. 1975; 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. Journal of Bacteriology 121:942–949
    [Google Scholar]
  8. Brown C. M., Dilworth M. J. 1975; Ammonia assimilation by Rhizobium cultures and bacteroids. Journal of General Microbiology 86:39–48
    [Google Scholar]
  9. Chern C., Kusaka I., Fukui S. 1976; Significance of pyruvate carboxylase in sugar metabolism of Agrobacterium tumefaciens. Agricultural and Biological Chemistry 40:771–778
    [Google Scholar]
  10. Cutting J. A., Schulman H. M. 1969; The site of haem synthesis in soybean nodules. Biochimica et biophysica acta 192:486–493
    [Google Scholar]
  11. De Ley J., Doudoroff M. 1957; The metabolism of D-galactose in Pseudomonas saccharophila. Journal of Biological Chemistry 227:745–757
    [Google Scholar]
  12. Englard S., Siegel L. 1969; Mitochondrial L-malate dehydrogenase of beef heart. Methods in Enzymology 13:99–106
    [Google Scholar]
  13. Fradkin J. E., Fraenkel D. G. 1971; 2-Keto-3-deoxygluconate 6-phosphate aldolase mutants of Escherichia coli. Journal of Bacteriology 108:1277–1283
    [Google Scholar]
  14. Fraenkel D. G., Vinopal R. T. 1973; Carbohydrate metabolism in bacteria. Annual Review of Microbiology 27:69–100
    [Google Scholar]
  15. Godfrey C. A., Coventry D. R., Dilworth M. J. 1975; Some aspects of leghaemoglobin biosynthesis. In Nitrogen Fixation by Free-living Micro-organisms pp. 311–332 Edited by Stewart W. D. P. Cambridge: Cambridge University Press;
    [Google Scholar]
  16. Hardy R. W. F. 1977; Rate-limiting steps in biological photoproductivity. In Genetic Engineering for Nitrogen Fixation pp. 369–397 Edited by Hollaender A. New York & London: Plenum Press;
    [Google Scholar]
  17. Herbert D., Phipps D. J., Strange R. E. 1971; Chemical analysis of microbial cells. Methods in Microbiology 5B:209–344
    [Google Scholar]
  18. Jordan D. C. 1962; The bacteroids of the genus Rhizobium. Bacteriological Reviews 26:119–141
    [Google Scholar]
  19. Katznelson H., Zagallo A. C. 1957; Metabolism of rhizobia in relation to effectiveness. Canadian Journal of Microbiology 3:879–884
    [Google Scholar]
  20. Keele B. B., Hamilton P. B., Elkan G. H. 1969; Glucose catabolism in Rhizobium japonicum. Journal of Bacteriology 97:1184–1191
    [Google Scholar]
  21. Kidby D. K. 1966; Activation of a plant invertase by inorganic phosphate. Plant Physiology 41:1139–1144
    [Google Scholar]
  22. Kidby D. K. 1967; Carbon metabolism in legume root nodules. Ph.D. thesis, University of Western Australia
  23. Kondorosi A., Svab Z., Kiss G. B., Dixon R. A. 1977; Ammonia assimilation and nitrogen fixation in Rhizobium meliloti. Molecular and General Genetics 151:221–226
    [Google Scholar]
  24. Kornberg H. L. 1966; Anaplerotic sequences and their role in metabolism. Essays in Biochemistry 2:1–31
    [Google Scholar]
  25. Kuby S. A., Noltman E. A. 1966; Glucose 6-phosphate dehydrogenase (crystalline) from Brewers' yeast. Methods in Enzymology 9:116–125
    [Google Scholar]
  26. Ling K. H., Paetkau V., Marcus F., Lardy H. A. 1966; Phosphofructokinase. I. Skeletal muscle. Methods in Enzymology 9:425–429
    [Google Scholar]
  27. Martinez-de Drets G., Arias A. 1972; Enzymatic basis for differentiation of Rhizobium into fast- and slow-growing groups. Journal of Bacteriology 109:467–470
    [Google Scholar]
  28. Mulongoy K., Elkan G. H. 1977a; Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency. Journal of Bacteriology 131:179–187
    [Google Scholar]
  29. Mulongoy K., Elkan G. H. 1977b; The role of 6-phosphogluconate dehydrogenase in Rhizobium. Canadian Journal of Microbiology 23:1293–1298
    [Google Scholar]
  30. Nadler K. D., Avissar Y. J. 1977; Heme synthesis in soybean root nodules. I. On the role of bacteroid δ-aminolevulinic acid synthase and δ-aminolevulinic acid dehydrase in the synthesis of the heme of leghemoglobin. Plant Physiology 60:433–436
    [Google Scholar]
  31. Noltman E. A. 1966; Phosphoglucose isomerase. I. Rabbit muscle (crystalline). Methods in Enzymology 9:557–568
    [Google Scholar]
  32. Pate J. S. 1977; Functional biology of dinitrogen fixation by legumes. In A Treatise on Dinitrogen Fixation. Section III: Biology, pp. 473–518 Edited by Hardy R. W. F., Silver W. S. New York: Wiley-Interscience;
    [Google Scholar]
  33. Phibbs P. V., Feary T. W., Blevins W. T. 1974; Pyruvate carboxylase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. Journal of Bacteriology 118:999–1009
    [Google Scholar]
  34. Rigaud J., Bergersen F. J., Turner G. L., Daniel R. M. 1973; Nitrate dependent anaerobic acetylene-reduction and nitrogen-fixation by soybean bacteroids. Journal of General Microbiology 77:137–144
    [Google Scholar]
  35. Romano A. H., Eberhard S. J., Dingle S. L., McDowell S. D. 1970; Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in bacteria. Journal of Bacteriology 104:803–813
    [Google Scholar]
  36. Rutter W. J., Hunsley J. R., Groves W. E., Calder J., Rajkumar T. V., Woodfin B. M. 1966; Fructose diphosphate aldolase. Methods in Enzymology 9:479–498
    [Google Scholar]
  37. Schwinghamer E. A. 1960; Studies on induced variation in the rhizobia. I. Defined media and nodulation test techniques. Applied Microbiology 8:349–352
    [Google Scholar]
  38. Streeter J. G., Bosler M. E. 1976; Carbohydrates in soybean nodules: identification of compounds and possible relationships to nitrogen fixation. Plant Science Letters 7:321–329
    [Google Scholar]
  39. Tuzimura K., Meguro H. 1960; Respiration substrate of Rhizobium in the nodules. Journal of Biochemistry 47:391–397
    [Google Scholar]
  40. Utter M. F., Scrutton M. C. 1969; Pyruvate carboxylase. Current Topics in Cellular Regulation 1:253–296
    [Google Scholar]
  41. Vicente M., Canovas J. L. 1973; Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. Journal of Bacteriology 116:908–914
    [Google Scholar]
  42. Vincent J. M. 1970 A Manual for the Practical Study of Root-nodule Bacteria International Biological Programme Handbook No. 15. Oxford: Blackwell Scientific Publications;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-112-1-77
Loading
/content/journal/micro/10.1099/00221287-112-1-77
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error