β-Galactoside Transport in an Alkaline-tolerant Strain of Free

Abstract

An alkaline-tolerant bacterium, which grew on various carbohydrates between pH 6 and 9·5, was isolated from soil and identified as . Lactose-grown organisms exhibited a transmembrane pH gradient (ΔpH) of −47 mV at pH 6·6, but no ΔpH at pH 9·0. The transmembrane electrical potential (Δ) was −66 mV at pH 6·6 and −115mV at pH 9·0. Thus the total protonmotive forces at the two pH values were essentially the same. Lactose-grown organisms transported thiomethyl --galactopyranoside (TMG) at pH 6·6 and at pH 9·0, but transport at the alkaline pH was dependent upon addition of ascorbate/-tetramethyl--phenylenediamine (TMPD) or preincubation with lactose. In the presence of ascorbate/TMPD, the TMG transport system exhibited similar kinetics and substrate specificities at pH 6·6 and pH 9·0, and resulted in accumulation of chemically unmodified TMG to a concentration approximately 180 times greater than the external concentration. Experiments in which a diffusion potential was generated in starved organisms or in which organisms were treated with nigericin indicated a lack of correlation between the rate of TMG uptake and the magnitude of Δ. By contrast, the rate of TMG uptake correlated with cellular ATP levels in organisms incubated at different pH values and in organisms treated with -dicyclohexylcarbodiimide, arsenate or nigericin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-112-1-161
1979-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/112/1/mic-112-1-161.html?itemId=/content/journal/micro/10.1099/00221287-112-1-161&mimeType=html&fmt=ahah

References

  1. Berger E. A. 1973; Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 70:1514–1518
    [Google Scholar]
  2. Berger E. A., Heppel L.A. 1974; Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. Journal of Biological Chemistry 249:7747–7755
    [Google Scholar]
  3. Bisschop A., de Jong L., Lima Costa M. E., Konings W. N. 1975a; Relation between reduced nicotinamide adenine dinucleotide oxidation and amino acid transport in membrane vesicles from Bacillus subtilis. Journal of Bacteriology 121:807–813
    [Google Scholar]
  4. Bisschop A., Doddema H., Konings W. N. 1975b; Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis. Journal of Bacteriology 124:613–622
    [Google Scholar]
  5. Buchanan R. E., Gibbons N. E. (editors) 1974 Bergey's Manual of Determinative Bacteriology, 8th edn.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Chislett M. E., Kushner D. J. 1961; A strain of Bacillus circulans capable of growing under highly alkaline conditions. Journal of General Microbiology 24:187–190
    [Google Scholar]
  7. Clark V. L., Young F. E. 1974; Active transport of D-alanine and related amino acids by whole cells of Bacillus subtilis. Journal of Bacteriology 120:1085–1092
    [Google Scholar]
  8. Cole H., Wimpenny J. W. T., Hughes D. E. 1967; The ATP pool in Escherichia coli I measurement of the pool using a modified luciferase assay. Biochimica et biophysica acta 143:445–453
    [Google Scholar]
  9. Egan G., Morse M. L. 1966; Carbohydrate transport in Staphylococcus aureus: Studies on the transport process. Biochimica et biophysica acta 112:63–73
    [Google Scholar]
  10. Flagg J. L., Wilson T. H. 1977; A proton-motive force as the source of energy for galactoside transport in energy-depleted Escherichia coli. Journal of Membrane Biology 31:233–255
    [Google Scholar]
  11. Gordon R. E., Haynes W. C., Hor-Nay Pang C. 1973 The genus Bacillus. Agriculture Hand-book No.427 Washington D.C.: U.S. Department of Agriculture;
    [Google Scholar]
  12. Guffanti A. A., Susman P., Blanco R., Krul-Wich T. A. 1978; The protonmotive force and α-aminoisobutyric acid transport in an obligately alkalophilic bacterium. Journal of Biological Chemistry 253:708–715
    [Google Scholar]
  13. Hegeman G.D. 1966; Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida I Synthesis of enzymes by the wild type. Journal of Bacteriology 91:1140–1154
    [Google Scholar]
  14. Hertzberg E. L., Hinkle P. C. 1974; Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli. Biochemical and Biophysical Research Communications 58:178–184
    [Google Scholar]
  15. Kashket E. R., Wilson T. H. 1974; Proton-motive force in fermenting Streptococcus lactis 7962 in relation to sugar accumulation. Biochemical and Biophysical Research Communications 59:879–885
    [Google Scholar]
  16. Kennedy E. P. 1970; The lactose permease system of Escherichia coli. The Lactose Operon49–92 Edited by Beckwith J. R., Zipser D. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Klein W. L., Boyer P. D. 1972; Energization of active transport by Escherichia coli. Journal of Biological Chemistry 247:7257–7265
    [Google Scholar]
  18. Konings W. N., Freese E. 1972; Amino acid transport in membrane vesicles of Bacillu subtilis. Journal of Biological Chemistry 247:2408–2418
    [Google Scholar]
  19. Konings W. N., Barnes E. M., Kaback H. R. 1971; Mechanisms of active transport in isolated membrane vesicles III. The coupling of reduced phenazine methosulfate to the concentrative uptake of β-galactosides and amino acids. Journal of Biological Chemistry 246:5857–5861
    [Google Scholar]
  20. Kushner D. J., Lisson T. A. 1959; Alkali resistance in a strain of Bacillus cereus pathogenic for the Larch Sawfly Pristiphora erichsonii. Journal of General Microbiology 21:96–108
    [Google Scholar]
  21. Larsen S. H., Adler J., Gargus J. J., Hogg R. W. 1974; Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proceedings of the National Academy of Sciences of the United States of America 71:1239–1243
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L/, Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  23. Maloney P. C., Kashket E. R., Wilson T. H. 1974; A proton motive force drives ATP synthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America 71:3896–3900
    [Google Scholar]
  24. Maloney P. C., Kashket E. R., Wilson T. H. 1975 Methods for studying transport in bacteria. In Methods in Membrane Biology 31–49 Edited by Korn E. D. New York: Plenum Press;
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  26. Marmur J., Doty P. 1959; Heterogeneity in deoxyribonucleic acids I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature, London 183:1427–1429
    [Google Scholar]
  27. Mitchell P. 1961; Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature, London 191:144–148
    [Google Scholar]
  28. Mitchell P. 1963; Molecule, group and electron translocation through natural membranes. Bio-chemical Society Symposia 22:142–168
    [Google Scholar]
  29. Ohta K., Kiyomiya A., Koyana N., Nosoh Y. 1975; The basis of the alkalophilic property of a species of Bacillus. Journal of General Microbiology 86:259–266
    [Google Scholar]
  30. Padan E., Zilberstein D., Rottenberg H. 1976; The proton electrochemical gradient in Escherichia coli cells. European Journal of Bio-chemistry 63:533–541
    [Google Scholar]
  31. Pavlasova E., Harold F. M. 1968; Energy coupling in the transport of β-galactosides by Escherichia coli: effect of proton conductors. Journal of Bacteriology 98:198–204
    [Google Scholar]
  32. Ramos S., Kaback H. R. 1977a; The electro-chemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16:848–854
    [Google Scholar]
  33. Ramos S., Kaback H. R. 1977b; The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry 16:854–859
    [Google Scholar]
  34. Ramos S., Schuldiner S., Kaback H. R. 1976; The electrical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America 73:1892–1896
    [Google Scholar]
  35. Scholes P., Mitchell P. 1970; Respiration driven proton translocation in Micrococcus denitrificans. Journal of Bioenergetic 1:1882–1884
    [Google Scholar]
  36. Schuldiner S., Kaback H. R. 1975; Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14:5451–5461
    [Google Scholar]
  37. Stanley P. E., Williams S. G. 1969; Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Analytical Biochemistry 29:381–392
    [Google Scholar]
  38. Tanaka S., Lerner S. A., LIN E. C. C. 1967; Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. Journal of Bacteriology 93:642–648
    [Google Scholar]
  39. Thipoyathasana P., Valentine R. C. 1974; The requirement for energy transducing ATPase for anaerobic motility in Escherichia coli. Bio-chimica et biophysica acta 347:464–468
    [Google Scholar]
  40. Tsuchiya T. 1977; Adenosine 5′-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli. Journal of Bacteriology 129:763–769
    [Google Scholar]
  41. Tsuchiya T., Rosen P. 1976; Adenosine 5′-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli. Journal of Bacteriology 127:154–161
    [Google Scholar]
  42. Waddell W. J., Butler T. C. 1959; Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO): application to skeletal muscle of the dog. Journal of Clinical Investigation 38:720–729
    [Google Scholar]
  43. West I. C., Mitchell P. 1972; Proton-coupled β-galactoside translocation in non-metabolizing Escherichia coli. Journal of Bioenergetics 3:445–462
    [Google Scholar]
  44. West I. C., Mitchell P. 1974; The proton-translocating ATPase of Escherichia coli. FEBS Letters 40:1–4
    [Google Scholar]
  45. Wilson D. M., Alderete J. F., Maloney P. C., Wilson T. H. 1976; Protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis in Escherichia coli. Journal of Bacteriology 126:327–337
    [Google Scholar]
  46. Winkler H. H., Wilson T. H. 1966; The role of energy coupling in the transport of β-galacto-sides by Escherichia coli. Journal of Biological Chemistry 241:2200–2211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-112-1-161
Loading
/content/journal/micro/10.1099/00221287-112-1-161
Loading

Data & Media loading...

Most cited Most Cited RSS feed