1887

Abstract

Seventy-eight mutants of strain NRRL 1951, that were impaired in penicillin production, were isolated following treatment with various mutagens. Twelve that yielded about 10% of their parental penicillin titre were studied in detail. Analyses of heterozygous diploids formed between them revealed the existence of at least five complementation groups with respect to penicillin production – V, W, X, Y and Z. Most mutants belonged to group Y. A biochemical investigation of the intracellular peptides in strains representing the five groups demonstrated the absence of the tripeptide -aminoadipoyl-cysteinyl-valine from mutants of groups X, Y and Z. Extracts of mutants of groups W, Y and Z were able to catalyse a penicillin acyl-exchange reaction, a mutant of group V showed only a trace of activity and a mutant from group X completely lacked this ability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-112-1-113
1979-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/112/1/mic-112-1-113.html?itemId=/content/journal/micro/10.1099/00221287-112-1-113&mimeType=html&fmt=ahah

References

  1. Adriaens P., Meeschaert B., Wuyts W., Vanderhaghe H., Eyssen H. 1975; Presence of δ(L(α-Aminnadipyl)-L-cysteinyl-D-valine in fermentations of penicillium chrysogenum. Antimicrobial Agents and Chemotherapy 8:638–642
    [Google Scholar]
  2. Alderson T., Scott B. R. 1970; The photosensitizing effect of 8-methoxypsoraien on the inactivation and mutation of Aspergillus conidia by near ultraviolet light. Mutation Research 9:569–578
    [Google Scholar]
  3. Alikhanian S. I., Mindlin S. Z., Goldat S. U., Vladimizov A. V. 1959; Genetics of organisms producing tetracyclines. Annals of the New York Academy of Sciences 81:914–949
    [Google Scholar]
  4. Arnstein H. R. V., Morris D. 1960; The structure of a peptide containing αAminoadipic acid, cysteine and valine, present in the mycelium of Penicillium chrysogenum. Biochemical Journal 76:357–361
    [Google Scholar]
  5. Arnstein H. R. V., Artman M., Morris D., Toms E. J. 1960; Sulphur-containing amino acids and peptides in the mycelium of Penicillium chrysogenum. Biochemical Journal 76:353–357
    [Google Scholar]
  6. Backus M. P., Stauffer J. P. 1955; The production and selection of a family of strains in Penicillium chrysogenum. Mycologia 47:429–463
    [Google Scholar]
  7. Blumauerová M., Mraček M., Vandráčcková J., Podojil J., Hostalek Z., Vaněk Z. 1969; Regulation of biosynthesis of secondary metabolites. IX. Biosynthetic activity of blocked mutants of Streptomyces aureofaciens. Folia microbiologica 14:215–225
    [Google Scholar]
  8. Bonner D. 1947; Studies on the biosynthesis of penicillin. Archives of Biochemistry 13:1–9
    [Google Scholar]
  9. Brewer G. A. K., Johnson M. J. 1953; Activity and properties of pard-aminobenzyl penicillin. Applied Microbiology 1:163–166
    [Google Scholar]
  10. Brownlee K. A., Loraine P. K., Stephens J. 1949; The biological assay of penicillin by a modified plate method. Journal of General Microbiology 3:347–352
    [Google Scholar]
  11. Brunner R., Rohr M., Zinner M. 1968; Zur Biosynthese des Penicillins. Hoppe-Seyler'S Zeitschrift fűr Physiologische Chemie 349:95–103
    [Google Scholar]
  12. Caglioti M. T., Sermonti G. 1956; A study of the genetics of penicillin-producing capacity in Penicillium chrysogenum. Journal of General Microbiology 14:38–46
    [Google Scholar]
  13. Cole M., Batchelor F. R. 1963; Aminoadipyl penicillin in penicillin-producing fermentations. Nature, London 198:383–384
    [Google Scholar]
  14. Cole D. S., Holt G., Macdonald K. D. 1976; Relationship of the genetic determination of impaired penicillin production in naturally occurring strains to that in induced mutants of Aspergillus nidulans. Journal of General Microbiology 96:423–426
    [Google Scholar]
  15. Demain A. L. 1973; Mutation and the production of secondary metabolites. Advances in Applied Microbiology 16:177–202
    [Google Scholar]
  16. Demain A. L. 1974; Biochemistry of penicillin and cephalosporin fermentations. Lloydia 37:147–167
    [Google Scholar]
  17. Ditchburn P., Holt G., Macdonald K. D. 1976; The genetic location of mutations increasing penicillin yield in Aspergillus nidulans. In Proceedings Of The Second International Symposium on the Genetics of Industrial Microorganisms pp. 213–227 Edited by Macdonald K. D. Academic Press; London:
    [Google Scholar]
  18. Edwards G. F., St L., Holt G., Macdonald K. D. 1974; Mutants of Aspergillus nidulans impaired in penicillin biosynthesis. Journal of General Microbiology 84:420–422
    [Google Scholar]
  19. Edwards G. F., St L., Normansell I. D., Holt G. 1975; Benlate-induced haploidization in diploid strains of Aspergillus NidulansandPenicillium chrysogenum. Aspergillus Newsletter 12:15
    [Google Scholar]
  20. Erickson R. c., Bennett R. E. 1965; Penicillin acylase activity of Penicillium chrysogenum. Applied Microbiology 13:738–742
    [Google Scholar]
  21. Flynn E. H., Mccormick M. H., Stamper M. C., Devaleria H., Godzeski C. W. 1962; A new natural penicillin from Penicillium chrysogenum. Journal of the American Chemical Society 84:4594–4595
    [Google Scholar]
  22. Fujisawa Y., Shirafuji H., Kida M., Nara K., Yoneda M., Kanzaki T. 1973; New findings on cephalosporin C biosynthesis. Nature, New Biology 246:154–155
    [Google Scholar]
  23. Fujisawa Y., Shirafuji H., Kanzaki T. 1975 A; Deacetylcephalosporin C formation by cephalosporin C acetyl-hydrolase induced in a Cephalo-sporium acremoniummutant. Agricultural and Biological Chemistry 39:1303–1309
    [Google Scholar]
  24. Fujisawa Y., Shirafuji H., Kida M., Nara K., Yoneda M., Kanzaki T. 1975a; Accumulation of dedcetylcephdlasparin C by cephalosporin C negative mutants of Cephalosporium acremonium. Agricultural and Biological Chemistry 39:1295–1301
    [Google Scholar]
  25. Gatenbeck S., Brunsberg U. 1968; Biosynthesis of penicillin. 1. Isolation of a 6- dminopenicilianic acid acyltransferase from Penicillium chrysogenum. Acta chemica scandinavica 22:1059–1061
    [Google Scholar]
  26. Goulden S. A., Chattaway F. W. 1968; Lysine control of α-aminoadipdte and penicillin synthesis in Penicillium chrysogenum. Biochemical Journal 110:55P–56P
    [Google Scholar]
  27. Heilmann J., Barrellier J., Watzke E. 1957; Beitrag zur Aminosaurebestimmung auf Papierchromatogrammen. Hoppe-Seyler'S Zeitschrift Fűr physiologische Chemie 309:219–220
    [Google Scholar]
  28. Hockenhull D. J. D. 1959; The influence of medium constituents on the biosynthesis of penicillin. Progress in Industrial Microbiology 1:3–27
    [Google Scholar]
  29. Holt G., Macdonald K. D. 1968; Penicillin production and its mode of inheritance in Aspergillus nidulans. Antonie van Leeuwenhoek 34:409–416
    [Google Scholar]
  30. Katz A. M., Dreyer W. J., Anfinsen C. B. 1959; Peptide separation by two-dimensional chromatography and electrophoresis. Journal of Biological Chemistry 234:2897–2900
    [Google Scholar]
  31. Lemke P. A., Nash C. H. 1972; Mutations that affect antibiotic synthesis by Cephalosporium acremonium. Canadian Journal' of Microbiology 18:255–259
    [Google Scholar]
  32. Loder P. B., Abraham E. P. 1971; Isolation and nature of intracellular peptides from a cephalosporin C-producing Cephalosporium Sp. Biochemical Journal 123:471–476
    [Google Scholar]
  33. Macdonald K. D. 1966; Differences in diploids synthesised between the same parental strains of Penicillium chrysogenum. Antonie van Leeuwenhoek 32:431–441
    [Google Scholar]
  34. Macdonald K. D., Holt G. 1976; Genetics of biosynthesis and over-production of penicillin. Science Progress, Oxford 63:547–573
    [Google Scholar]
  35. Macdonald K. D., Hutchinson J. M., Gillett W. A. 1963a; Isolation of auxotrophs of Penicillium chrysogenumand their penicillin yields. Journal Of General Microbiology 33:365–374
    [Google Scholar]
  36. Macdonald K. D., Hutchinson J. M., Gillett W. A. 1963b; Formation and segregation of heterozygous diploids between a wild-type strain and derivatives of high penicillin yield in Penicillium chrysogenum. Journal of General Microbiology 33:385–394
    [Google Scholar]
  37. Macdonald K. D., Hutchinson J. M., Gillett W. A. 1965; Heterozygous diploids of penicillium chrysogenum and their segregation patterns. Genetica 36:378–397
    [Google Scholar]
  38. Merrick M. J., Caten C. E. 1975; The design of fermentation and biological assay procedures for assessment of penicillin production in populations of Aspergillus nidulans. Journal of Applied Bacteriology 38:121–131
    [Google Scholar]
  39. Nash C. H., , De La Higuera N., Neuss N., Lemke P. A. 1974; Application of biochemical genetics to the biosynthesis of β-lactam antibiotics. Developments in Industrial Microbiology 15:114–123
    [Google Scholar]
  40. Peterson W. H., Wideburg N. E. 1960; Enzymatic interconversion of penicillins G and V.In Proceedings of the 4th International Congress Of Biochemistry,. Vienna vol. 15:P. 136 London:: Pergamon.;
    [Google Scholar]
  41. Pontecorvo G., Roper J. A., Hemmons L. M., Macdonald K. D., Bufton A. W. J. 1953; The genetics of Aspergillus nidulans. Advances in Genetics 5:141–238
    [Google Scholar]
  42. Pruess D. L., Johnson M. J. 1967; Penicillin acyltransferase in Penicillium chrysogenum. Journal of Bacteriology 94:1502–1508
    [Google Scholar]
  43. Raper K. B., Alexander D. F. 1945; Penicillin V. Mycological aspects of penicillin production. Journal of the Elisha Mitchell Scientific Society 61:74–113
    [Google Scholar]
  44. Sakaguchi K., Murao S. 1950; A preliminary report on a new enzyme, penicillin-amidase. Journal of the Agricultural Chemical Society of Japan 23:411
    [Google Scholar]
  45. Sermonti G. 1956; Complementary genes which affect penicillin yields. Journal of General Microbiology 15:599–608
    [Google Scholar]
  46. Sermonti G. 1959; Genetics of penicillin production. Annals of the New York Academy of Sciences 81:950–973
    [Google Scholar]
  47. Simpson I. N. 1977; A quantitative investigation of the genetics of penicillin production in mutation selected lines of Aspergillus Nidulans.Ph.D. thesis, University Of Birmingham.
    [Google Scholar]
  48. Smith B., Warren S. C., Newton G. G. F., Abraham E. P. 1967; Biosynthesis of Penicillin N and cephalosporin C. Antibiotic production and other features of the metabolism of a CephLosporiumsp. Biochemical Journal 103:877–890
    [Google Scholar]
  49. Spencer B. 1968; The biosynthesis of penicillins: acylation of 6-aminopenicillanic acid. Biochemical and Biophysical Research Communications 31:170–175
    [Google Scholar]
  50. Spencer B., Muang C. 1970; Multiple activities of penicillin acyltransferase of Penicillium chrysogenum. Biochemical Journal 188:29P–30P
    [Google Scholar]
  51. Yost H. T., Chaleff R. S., Finerty J. P. 1967; Induction of mitotic recombination in Saccharomyces cerevisiae by ethylmethane sulphonate. Nature; London: 215:660–661
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-112-1-113
Loading
/content/journal/micro/10.1099/00221287-112-1-113
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error