Lysine Transport Systems in Pseudomonas in Relation to Their Physiological Function Free

Abstract

, which can use lysine as a carbon and energy source, has two active transport systems for lysine – a high affinity system, inhibited by arginine and ornithine, and a low affinity system. Lysine-grown organisms had a higher transport activity than succinate-grown organisms but this higher activity was probably not the result of induction by lysine. , a species unable to degrade lysine, has a single high affinity active transport system specific for lysine; this transport system has a physiological role in the maintenance of the internal concentration of free lysine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-111-2-263
1979-04-01
2024-03-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/111/2/mic-111-2-263.html?itemId=/content/journal/micro/10.1099/00221287-111-2-263&mimeType=html&fmt=ahah

References

  1. ADLER J. Chemotaxis in bacteria. Science 1966; 153:708–716
    [Google Scholar]
  2. ADLER J. Chemotaxis in bacteria. Annual Review of Microbiology 1975; 44:341–356
    [Google Scholar]
  3. BERGER E.A., HEPPEL L.A. Different mechanisms of energy coupling for the shocksensitive and shock-resistant amino acid permeases of Escherichia coli . Journal of Biological Chemistry 1974; 249:7747–7755
    [Google Scholar]
  4. CELIS T.F.R., ROSENFELD H.D., MAAS W.K. Mutant of Escherichia coli K12 defective in the transport of basic amino acids. Journal of Bacteriology 1973; 116:619–626
    [Google Scholar]
  5. FAN C.L. Transport of basic amino acids and protein turnover in Pseudomonas putida. Ph.D.Thesis Purdue University; U.S.A.: 1973; 59:440–442
    [Google Scholar]
  6. GILLELAND H.E., STINNETT J. D., ROTH I.L., EAGON J. Freeze-etch study of Pseudomonas aeruginosa: localization within the cell wall of an e thylenediamine te traace ta te-ex trac table component. Journal of Bacteriology 1973; 113:417–432
    [Google Scholar]
  7. GRYDER R. M., ADAMS E. Properties of the inducible hydroxyproline transport system of Pseudomonas putida . Journal of Bacteriology 1970; 101:948–958
    [Google Scholar]
  8. HERMANN M., PHILLIPS D.A. Etude des facteurs gouvernant I'excrétion de Iysine par des souches de Pseudomonas. Doctorate of Sciences thesis 1972 University of Paris-Sud-Orsay; France:
    [Google Scholar]
  9. HERMANN M., THIÉVENET N.J., COUDERT-MARAT M.M., VANDECASTEELP J.-E. Consequence of lysine oversynthesis in Pseudomonas mutants insensitive to feedback inhibition. Lysine excretion or endogenous induction of a lysinecatabolic pathway. European Journal of Biochemistry 1972; 30:100–106
    [Google Scholar]
  10. KABACK H.R. Bacterial membranes.. Methods in Enzymology 1971; 22:99–120
    [Google Scholar]
  11. KADNER R.J., WINKLER H.H. Energy coupling for methionine transport in Escherichia coli . Journal of Bacteriology 1975; 123:985–991
    [Google Scholar]
  12. KAY W.W., GRONLUND A.F. Isolation of transport-negative mutants of Pseudomonas aeruginosa and cells with repressed transport activity.. Journal of Bacteriology 1969; 98:116–123
    [Google Scholar]
  13. KLEIN W. L., BOYER P.D. Energization of active transport by Escherichia coli.. Journal of Biological Chemistry 1972; 247:7257–7265
    [Google Scholar]
  14. KONINGS W.N., FREESE E. Amino acid transport in membrane vesicles of Bacillus subtilis. Journal of Biological Chemistry 1972; 247:2408–2418
    [Google Scholar]
  15. KONINGS W.N., BARNES E.M., KABACK H.R. Mechanisms of active transport in isolated membrane vesicles. 111. The coupling of reduced phenazine methosulfate to the concentrative uptake of β-galactosides and amino acids.. Journal of Biological Chemistry 1971; 246:5857–5861
    [Google Scholar]
  16. LAYNE E. Spectrophotometric and turbidimetric methods for measuring protein.. Methods in Enzymology 1957; 3:447–454
    [Google Scholar]
  17. MÄNTSÄLÄ P., LAAKSO S., NURMIKKO V. Observations on methionine transport in Pseudomonas fluorescens UK1. Journal of General Microbiology 1974; 84:19–27
    [Google Scholar]
  18. MILLER D.L., RODWELL V.W. Metabolism of basic amino acids in Pseudomonas putida. Properties of the inducible transport system.. Journal of Biological Chemistry 1971; 246:1765–1771
    [Google Scholar]
  19. ROBINSON D.S. Oxidation of selected alkanes and related compounds by a Pseudomonas strain . Antonie van Leeuwenhoek 1964; 30:303–316
    [Google Scholar]
  20. ROSEN B.P., PHILLIPS D.A. Basic amino acid transport in Escherichia coli . Journal of Biological Chemistry 1971; 246:3653–3662
    [Google Scholar]
  21. ROSEN B.P. Basic amino acid transport in Escherichia coli: properties of canavanine-resistant mutants.. Journal of Bacteriology 1973; 116:627–635
    [Google Scholar]
  22. ROSEN B. P., HEPPEL L.A. Present status of binding proteins that are released from gramnegative bacteria by osmotic shock.. In Bacterial Membranes and Walls 1973 pp 209–239 Leive L. New York: Marcel Dekker;
    [Google Scholar]
  23. ROSENFELD H., FEIGELSON P. Product induction in Pseudomonas acidovorans of a permease system which transports L-tryptophan.. Journal of Bacteriology 1968; 97:705–714
    [Google Scholar]
  24. STANIER R. Y., PALLERONI N.J., DOUDOROFF M. The aerobic pseudomonads: a taxonomic study.. Journal of General Microbiology 1966; 43:159–271
    [Google Scholar]
  25. STINNETT J.D., GUYMON L.F., EAGON R.G. A novel technique for the preparation of transport-active membrane vesicles from Pseudomonas aeruginosa : observations on gluconate transport.. Biochemical and Biophysical Research Communications 1973; 52:284–290
    [Google Scholar]
  26. VANDECASTEELE J.-P., HERMANN M. Regulation of a catabolic pathway. Lysine degradation in Pseudomonas putida . European Journal of Biochemistry 1972; 31:80–85
    [Google Scholar]
  27. VANDECASTEELE J. -P., HERMANN M., THéVENET N. intracellular level and the excretion of lysine in Pseudornonas . Proceedings of the First Intersectional Congress of IAMS 1975; 5: pp 332–346 Hasegawa. T. . Science Council of JaDan;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-111-2-263
Loading
/content/journal/micro/10.1099/00221287-111-2-263
Loading

Data & Media loading...

Most cited Most Cited RSS feed