1887

Abstract

Summary: The genome sizes of 128 strains of cyanobacteria, representative of all major taxonomic groups, lie in the range 1.6 × 10 to 8.6 × 10 daltons. The majority of unicellular cyanobacteria contain genomes of 1.6 × 10 to 2.7 × 10 daltons, comparable in size to those of other bacteria, whereas most pleurocapsalean and filamentous strains possess larger genomes. The genome sizes are discontinuously distributed into four distinct groups which have means of 2.2 × 10, 3.6 × 10, 5.0 × 10 and 7.4 × 10 daltons. The data suggest that genome evolution in cyanobacteria occurred by a series of duplications of a small ancestral genome, and that the complex morphological organization characteristic of many cyanobacteria may have arisen as a result of this process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-111-1-73
1979-03-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/111/1/mic-111-1-73.html?itemId=/content/journal/micro/10.1099/00221287-111-1-73&mimeType=html&fmt=ahah

References

  1. BAK A. L., BLACK F.T., CHRISTIANSEN C., FREUND E.A. Genome size of mycoplasma1DNA.. Nature London: 1969; 224:1209–1210
    [Google Scholar]
  2. BAK A.L., CHRISTIANSEN C., STENDERUP A. Bacterial genome sizes determined from DNA renaturation studies.. Journal of General Microbiology 1970; 64:377–380
    [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorinietric estimation of DNA.. BiochemicalJournal 1956; 62:315–323
    [Google Scholar]
  4. GILLIS M., DE LEY, J. Determination of the molecular complexity of double-stranded phage genome DNA from initial renaturation rates. The effect of DN base composition.. Journal of Molecular Biology 1975; 98:447–464
    [Google Scholar]
  5. GJLLIS M., DE LEY, J., DECLEENE M. The determination of molecular weight of bacterial genome DNA from renaturation rates.. European Journal of Biochemistry 1970; 12:143–153
    [Google Scholar]
  6. HERDMAN M., CARR N.G. Estimation of the genome size of blue-green algae from DNA renaturation rates.. Archives of Microbio 1974; 99:251–254
    [Google Scholar]
  7. HERDMAN M., JANVIER M., WATERBURY YJ. B., RIPPKA R., STANIER R.Y., MANDEL M. Deoxyribonucleic acid base composition of cyanobacteria. Journal of General Microbiology 1979; 111:63–71
    [Google Scholar]
  8. KUNG , MOSCARELLO M.A., WILLIAMS J.P. Studies with deoxyribonucleic acid from blue-green algae.. Plant Physiology 1972; 49:331–334
    [Google Scholar]
  9. MANN N., CARR N.G. Control ofmacromolecular composition and cell division inthe blue-green alga Anacystis nidulans. Journal of General Microbiology 1974; 83:399–405
    [Google Scholar]
  10. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.. Journal of Molecular Biology 1962; 5:109–118
    [Google Scholar]
  11. PEMBERTON( J.M. Size of the chromosome of Pseudomonas aevuginosa PAO.. ournal of Bacteriology 1974; 119:748–752
    [Google Scholar]
  12. RIPPKA R., WATERBURY J.B. The synthesis of nitrogenase by non-heterocys tous cyanobacteria.. FEMS Microbiology Letters 1977; 2:83–86
    [Google Scholar]
  13. RIPPKA R., DERUELLES J., WATERBURY J.B., HERDMAN M., STANIER R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 1979; 111:1–61
    [Google Scholar]
  14. ROBERTS T.M., KLOTZ L.C., LOEBLICH A.R. Characterisation of a blue-green algal genome.. Journal of Molecular Biology 1977; 110:341–361
    [Google Scholar]
  15. STAM, W.T., VENEMA G. The use of DNADNA hybridization for determination of the relationship between some blue-green algae (Cyanophyceae).. Acta botanica neerlandica 1977; 26:327–342
    [Google Scholar]
  16. STANIER R.Y., COHEN-BAZIRE G. Phototrophic prokaryotes : the cyanobacteria.. Annual Review of Microbiology 1977; 31:225–274
    [Google Scholar]
  17. STANIER R.Y, KUNISAWA R., MANDEL M., COHEN-BAZIRE G. Purification and properties of unicellular blue-green algae (order Chroococcales).. Bacteriological Reviews 1971; 35:171–205
    [Google Scholar]
  18. WALLACE D.C., MOROWITZ H.J. Genome size and evolution.. Chromosoma 1973; 40:121–126
    [Google Scholar]
  19. WATERBURY J.B., STANIER R.Y. Two unicellular cyanobacteria which reproduce by budding.. Archives of Microbiology 1977; 115:249–257
    [Google Scholar]
  20. WATERBURY J.B., STANIER R.Y. Patterns of growth and development in pleurocapsalean cyanobacteria.. Bacteriological Reviews 1978; 42:2–44
    [Google Scholar]
  21. WETMUR J.G., DAVIDSON N. Kinetics of renaturation of DNA.. Journal of Molecular Biology 1968; 31:349–370
    [Google Scholar]
  22. ZIPKAS D., RILEY M. Proposal concerning the evolution of the genome of Escherichia coli.. Proceedings of the National Academy of Sciences of the United States of America 1975; 72:1354–1358
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-111-1-73
Loading
/content/journal/micro/10.1099/00221287-111-1-73
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error