Transfer of a Gene for Sucrose Utilization into 12, and Consequent Failure of Expression of Genes for -Serine Utilization Free

Abstract

Summary: As the first stage in investigating the genetic basis of natural variation in , the gene(s) conferring the ability to use sucrose as a carbon and energy source (given the symbol ) was transferred from a wild strain to 12, which does not use sucrose. The region was transferred by two different methods. On both occasions it took a chromosomal location at minute 50·5 on the linkage map, between and , in the region of the genes, which confer the ability to use -serine as a carbon and energy source. When the region was present in the 12 chromosome the bacteria were unable to use -serine as a carbon and energy source. In / diploids, the genes were similarly not expressed. Strain 12( ) bacteria were sensitive to inhibition by -serine; they mutated to -serine resistance with much greater frequency than did a mutant of 12. Such bacteria also mutated frequently to use raffinose. Strain 12( ) bacteria did not utilize sucrose when they carried a mutation affecting the phosphotransferase system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-110-1-47
1979-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/110/1/mic-110-1-47.html?itemId=/content/journal/micro/10.1099/00221287-110-1-47&mimeType=html&fmt=ahah

References

  1. Adelberg E. A., Mandel M., Chein Ching Chen G. 1965; Optimal conditions for mutagenesis by N-methyl-Nʹ-nitro-N-nitrosoguanidine in Escherichia coli k-12.. Biochemical and Biophysical Research Communications 18:788–795
    [Google Scholar]
  2. Alaeddinoglu N. G. 1976 Genetical analysis of variation in the ability to utilize sucrose in strains of Escherichia coli. Ph.D. thesis Reading University;
    [Google Scholar]
  3. Bachmann B. J. 1972; Pedigrees of some mutant strains of Escherichia coli k-12.. Bacteriological Reviews 36:525–557
    [Google Scholar]
  4. Bachmann B. J., Low K. B., Taylor A. L. 1976; Recalibrated linkage map of Escherichia coli k-12.. Bacteriological Reviews 40:116–167
    [Google Scholar]
  5. Baron L. S., Carey W. F., Spilman W. M. 1959; Characterization of a high frequency of recombination (Hfr) strain of Salmonella typhosa compatible with Salmonella, Shigella and Escherichia species.. Proceedings of the National Academy of Sciences of the United States of America 45:976–983
    [Google Scholar]
  6. Bloom F. R., McFall E., Young M. C., Carothers A. M. 1975; Positive control in the d-serine deaminase system of Escherichia coli k-12.. Journal of Bacteriology 121:1092–1101
    [Google Scholar]
  7. Bukhari A. I., Taylor A. L. 1971; Genetic analysis of diaminopimelic acid- and lysine-requiring mutants of Escherichia coli. Journal of Bacteriology 105:844–854
    [Google Scholar]
  8. Coetzee J. N. 1962; Sucrose fermentation by Proteus hauseri. Journal of General Microbiology 29:455–472
    [Google Scholar]
  9. Cohen S. N. 1976; Transposable genetic elements and plasmid evolution.. Nature, London 263:731–738
    [Google Scholar]
  10. Cosloy S. D. 1973; d-Serine transport system in Escherichia coli k12.. Journal of Bacteriology 114:679–684
    [Google Scholar]
  11. Curtiss III R., Charamella L. J., Berg C. M., Harris P. E. 1965; Kinetic and genetic analyses of d-cycloserine inhibition and resistance in Escherichia coli. Journal of Bacteriology 90:1238–1250
    [Google Scholar]
  12. Edwards P. R., Ewing W. H. 1972; Identification of Enterobacteriaceae. 3rd edn, p. 68. Minneapolis, U.S.A.: Burgess Publishing Co;
    [Google Scholar]
  13. Eggertsson G., Adelberg E. A. 1965; Map positions and specificities of suppressor mutations in Escherichia coli k12.. Genetics 52:319–340
    [Google Scholar]
  14. Epstein W., Jewett S., Fox C. F. 1970; Isolation and mapping of phosphotransferase mutants in Escherichia coli. Journal of Bacteriology 104:793–797
    [Google Scholar]
  15. Goldberg R. B., Bender R. A., Streicher S. L. 1974; Direct selection for P1-sensitive mutants of enteric bacteria.. Journal of Bacteriology 118:810–814
    [Google Scholar]
  16. Hedges R. W., Jacob A. E. 1974; Transposition of ampicillin resistance from RP4 to other replicons.. Molecular and General Genetics 132:31–40
    [Google Scholar]
  17. Huang M., Pittard J. 1967; Genetic analysis of mutant strains of Escherichia coli requiring p-aminobenzoic acid for growth.. Journal of Bacteriology 93:1938–1942
    [Google Scholar]
  18. Kessel D., Lubin M. 1965; Stability of α-hydrogen of amino acids during active transport.. Biochemistry 4:561–565
    [Google Scholar]
  19. Kornberg H. L., Jones-Mortimer M. C. 1977; The phosphotransferase system as a site of cellular control.. Symposia of the Society for General Microbiology 27:217–240
    [Google Scholar]
  20. Le Minor L., Coynault C., Rohde R., Rowe B., Aleksic S. 1973; Localisation plasmidique du déterminant génétique du caractére atypique ‘Saccharose+’ des Salmonella. Annales de Microbiologie de l’Institut Pasteur 124B:295–306
    [Google Scholar]
  21. Lepesant J.-A., Kunst F., Lepesant-Kejlarova J., Dedonder R. 1972; Chromosomal locations of mutations affecting sucrose metabolism in Bacillus subtilis Marburg.. Molecular and General Genetics 118:135–160
    [Google Scholar]
  22. Low K. B., Wood T. H. 1965; A quick and efficient method for interruption of bacterial conjugation.. Genetical Research, Cambridge 6:300–303
    [Google Scholar]
  23. McFall E. 1964a; Genetic structure of d-serine deaminase system in Escherichia coli. Journal of Molecular Biology 9:746–753
    [Google Scholar]
  24. McFall E. 1964b; Pleiotropic mutations in the d-serine deaminase system of Escherichia coli. Journal of Molecular Biology 9:754–764
    [Google Scholar]
  25. McFall E. 1967a; Mapping of the d-serine deaminase region in Escherichia coli. Genetics 55:91–99
    [Google Scholar]
  26. McFall E. 1967b; Dominance studies with stable merodiploids in the d-serine deaminase system of Escherichia coli k12. Journal of Bacteriology 94:1982–1988
    [Google Scholar]
  27. McFall E. 1973; Role of adenosine 3ʹ,5ʹ-cyclic monophosphate and its specific binding protein in the regulation of d-serine deaminase synthesis.. Journal of Bacteriology 113:781–785
    [Google Scholar]
  28. McFall E. 1975; Escherichia coli k12 mutant forming a temperature sensitive d-serine deaminase.. Journal of Bacteriology 121:1074–1077
    [Google Scholar]
  29. Morse M. L., Alire M. L. 1958; An agar medium indicating acid production.. Journal of Bacteriology 76:270–271
    [Google Scholar]
  30. Ornston L. M., Ornston M. K., Chou G. 1969; Isolation of spontaneous mutant strains of Pseudomonas putida. Biochemical and Biophysical Research Communications 36:179–184
    [Google Scholar]
  31. Ørskov I., Ørskov F. 1973; Plasmid determined H2S character in Escherichia coli and its relation to plasmid-carried raffinose fermentation and tetracycline resistance characters.. Journal of General Microbiology 77:487–499
    [Google Scholar]
  32. Pardee A. B., Prestidge L. S. 1955; Induced formation of serine and threonine deaminases by Escherichia coli. Journal of Bacteriology 70:667–673
    [Google Scholar]
  33. Robbins J. C., Oxender D. L. 1973; Transport systems for alanine, serine and glycine in Escherichia coli k12.. Journal of Bacteriology 116:12–18
    [Google Scholar]
  34. Roseman S. 1969; The transport of carbohydrates by a bacterial phosphotransferase system.. Journal of General Physiology 54:138s–184s
    [Google Scholar]
  35. Roseman S. 1972; Carbohydrate transport in bacterial cells.. Metabolic Transport VI:42–62
    [Google Scholar]
  36. Saier M. H., Stiles C. D. 1975; Regulation of bacterial metabolism. In Molecular Dynamics in Biological Membranes pp. 99–105 New York, Heidelberg & Berlin: Springer Verlag;
    [Google Scholar]
  37. Salisbury V., Hedges R. W., Datta N. 1972; Two modes of curing transmissible bacterial plasmids.. Journal of General Microbiology 70:443–452
    [Google Scholar]
  38. Smith H., Williams & Parsell Z. 1975; Transmissible substrate-utilizing ability in enterobacteria.. Journal of General Microbiology 87:129–140
    [Google Scholar]
  39. Taylor A. L., Adelberg E. A. 1960; Linkage analysis with very high frequency males of Escherichia coli. Genetics 45:1233–1243
    [Google Scholar]
  40. Vogel H. J., Bonner D. M. 1956; A convenient growth medium for Escherichia coli and some other microorganisms (Medium E).. Microbial Genetics Bulletin 13:43–44
    [Google Scholar]
  41. Wang R. J., Morse H. G., Morse M. L. 1969; Carbohydrate accumulation and metabolism in Escherichia coli: the close linkage and chromosomal location of ctr mutations.. Journal of Bacteriology 98:605–610
    [Google Scholar]
  42. Wang R. J., Morse H. G., Morse M. L. 1970; Carbohydrate accumulation and metabolism in Escherichia coli: characteristics of the reversions of ctr mutations.. Journal of Bacteriology 104:1318–1324
    [Google Scholar]
  43. Wargel R. J., Shadur C. A., Neuhaus F. C. 1971; Mechanism of d-cycloserine action: transport mutants for d-alanine, d-cycloserine and glycine.. Journal of Bacteriology 105:1028–1035
    [Google Scholar]
  44. Wohlhieter J. A., Lazere J. R., Snellings N. J., Johnson E. M., Synenki R. M., Baron L. S. 1974; Characterization of transmissible genetic elements from sucrose-fermenting Salmonella strains.. Journal of Bacteriology 122:401–406
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-110-1-47
Loading
/content/journal/micro/10.1099/00221287-110-1-47
Loading

Data & Media loading...

Most cited Most Cited RSS feed