1887

Abstract

SUMMARY: is capable of normal photosynthetic growth, and of heterotrophic growth in darkness on acetate, pyruvate or lactate. An ultraviolet-induced mutant (D. 2075) was isolated which behaved like an obligate photo-autotroph. In the presence of 2:4-dinitrophenol (5 × 10 ) or sodium azide (1 × 10 ), the wild-type organism similarly behaved in growth experiments like an obligate photo-autotroph. Mutant cells oxidized all added acetate to CO. Wild-type cells oxidized a portion of the substrate, and utilized some of the energy so released for the assimilation of the remainder. There are indications that in the wild type the assimilation of acetate commences only after a period of acetate oxidation. The mutant is believed to be impaired in its ability to effect oxidative assimilation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-11-3-459
1954-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/11/3/mic-11-3-459.html?itemId=/content/journal/micro/10.1099/00221287-11-3-459&mimeType=html&fmt=ahah

References

  1. Allison R.K., Skipper H.E., Reid M.R., Short W.A., Hogan G.L. 1953; Studies on the photosynthetic reaction. I. The assimilation of acetate by Nostoc muscorum. 204:197
    [Google Scholar]
  2. Anderson E.M. 1945; Metabolism of Prototheca zopfii. J. gen. Physiol. 28:297
    [Google Scholar]
  3. Barker H.A. 1935; The metabolism of the colorless alga, Prototheca zopfii Krüger. J. cell. comp. Physiol. 7:73
    [Google Scholar]
  4. Barron E.S.G., Ghiretti F. 1953; The pathways of acetate oxidation. Biochim. Biophys. Acta 12:239
    [Google Scholar]
  5. Calvin M., Bassham J.A., Benson A.A., Lynch V.H., Ouellet C., Schou L., Stepka W., Tolbert N.E. 1951; Carbon dioxide assimilation in plants. Symp. Soc. exp. Biol. 5:284
    [Google Scholar]
  6. Clifton C.E. 1946; Microbial assimilations. Advanc. Enzymol. 6:269
    [Google Scholar]
  7. Cook R.P., Stephenson M. 1928; Bacterial oxidations by molecular oxygen. I. The aerobic oxidation of glucose and its fermentation products in its relation to the viability of the organism. Biochem. J. 22:1368
    [Google Scholar]
  8. Cooper I.C.G. 1952; Chlamydomonas dysosmos Moewus in Staten Island. Proc. Staten Is. Inst. 14:74
    [Google Scholar]
  9. Goldschmidt M.C., Powelson D.M. 1953; Effect of the culture medium on the oxidation of acetate by Micrococcus pyogenes var. aureus. Arch. Biochem. Biophys. 46:154
    [Google Scholar]
  10. Karlsson J.L. 1950; Metabolic studies of Azotobacter agilis by the use of a mutant deficient in pyruvic oxidase. J. biol. Chem. 183:549
    [Google Scholar]
  11. King T.E., Cheldelin V.H. 1953; Sources of energy and the dinitrophenol effect in the growth of Acetobacter suboxydans. J. Bact. 66:581
    [Google Scholar]
  12. Krebs H.A., Gurin S., Eggleston L.V. 1952; The pathway of oxidation of acetate in baker’s yeast. Biochem. J. 51:614
    [Google Scholar]
  13. Lewin J.C. 1950; Obligate autotrophy in Chlamydomonas moewusii. Science 112:652
    [Google Scholar]
  14. Lewin J.C. 1953; Heterotrophy in diatoms. J. gen. Microbiol. 9:305
    [Google Scholar]
  15. Lewin R.A. 1951; Isolation of sexual strains of Chlamydomonas. J. gen. Microbiol. 5:926
    [Google Scholar]
  16. Lewin R.A. 1952; Ultraviolet induced mutations in Chlamydomonas moewusii Gerloff. J. gen. Microbiol. 6:233
    [Google Scholar]
  17. Lindsay M., O’Donnell T.V., Edson N.L. 1950; The oxidation of pyruvate and fatty acids by Mycobacterium ranae. Biochem. J. 46:248
    [Google Scholar]
  18. Moewus F. 1931; Neue Chlamydomonaden. Arch. Protistenk. 75:284
    [Google Scholar]
  19. Millerd A., Bonner J., Biale J.B. 1953; The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28:521
    [Google Scholar]
  20. Milner H.W., Lawrence N.S., French C.S. 1950; Colloidal dispersion of chloroplast material. Science 111:633
    [Google Scholar]
  21. Myers J. 1947; Oxidative assimilation in relation to photosynthesis in Chlorella. J. gen. Physiol. 30:217
    [Google Scholar]
  22. Santer M., Ajl S. 1954; Metabolic reactions of Pasteurella pestis. I. Terminal oxidation. J. Bact. 67:379
    [Google Scholar]
  23. Simon E.W. 1953; Mechanisms of dinitrophenol toxicity. Biol. Rev. 28:453
    [Google Scholar]
  24. Stokes J.L. 1954; Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J. Bact. 67:278
    [Google Scholar]
  25. Tamiya H. 1932; Über die Verwendbarkeit von verschiedenen Kohlenstoffver-bindungen im Bau und Betriebsstoffwechsel der Schimmelpilze. Studien über die Stoffwechselphysiologie von Aspergillus oryzae. IV. Acta Phytochim. 6:1
    [Google Scholar]
  26. Taylor F.J. 1950; Oxidative assimilation of glucose by Scenedesmus quadricauda. J. exp. Bot. 1:301
    [Google Scholar]
  27. Umbreit W.W., Burris R.H., Stauffer J.F. 1949 Manometric Techniques and Tissue Metabolism, 2nd ed.. Minneapolis:: Burgess Publishing Co.;
    [Google Scholar]
  28. Van Niel C.B. 1941; The bacterial photosyntheses and their importance for the general problem of photosynthesis. Adv. Enzymol. 1:263
    [Google Scholar]
  29. Winzler R.J. 1940; The oxidation and assimilation of acetate by baker’s yeast. J. cell. comp. Physiol. 15:343
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-11-3-459
Loading
/content/journal/micro/10.1099/00221287-11-3-459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error