Purification and characterization of glucose-6-phosphate dehydrogenase from and Free

Abstract

Glucose-6-phosphate dehydrogenase (G6PD; -glucose 6-phosphate: NADP oxidoreductase, EC 1.1.1.49) has been purified from and by a combination of affinity and anion exchange chromatography. A 500–1000-fold purification was obtained and the final enzyme preparations were shown to be pure but not homogeneous. For both fungi the purified enzyme preparation gave two bands on native and denaturing gels. The catalytically active form is a multimer. The molecular mass of the monomers is 60 and 57 kDa for and 55 and 53 kDa for Both enzymes exhibited strict specificity towards both substrates glucose 6-phosphate and NADP. The and G6PD enzymes catalyse the conversion of glucose 6-phosphate via a random order mechanism. Inhibition studies provided evidence for the physiological role of G6PD as producer of NADPH in both fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-11-2793
1993-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/11/mic-139-11-2793.html?itemId=/content/journal/micro/10.1099/00221287-11-2793&mimeType=html&fmt=ahah

References

  1. Bainbridge B. W., Bull A. T., Pirt S. J., Rowley B. I., Trinci A. P. 1971; Biochemical and structural changes in non-growing and autolysing cultures of Aspergillus nidulans. Transactions of the British Mycological Society 56:371–375
    [Google Scholar]
  2. Beutler E., Kuhl W. 1986; Characteristics and significance of the reverse glucose-6-phosphate dehydrogenase reaction. Journal of Laboratory and Clinical Medicine 107:502–507
    [Google Scholar]
  3. Bonsignore A., De Flora A. 1972; Regulatory properties of glucose-6-phosphate dehydrogenase. In Current Topics in Cellular Regulation 6 pp. 21–62 Hoecker B. L., Stadtman E. R. Edited by New York: Academic Press;
    [Google Scholar]
  4. Camardella L., Caruso C., Rutigliano B., Romano M., Di Prisco G., Descalzi-Cancedda. 1988; Human erythrocyte glucose-6-phosphate dehydrogenase. Identification of a reactive lysyl residue, labelled with 5′-pyridoxal phosphate. European Journal of Biochemistry 171:485–489
    [Google Scholar]
  5. Carter B. L. A., Bull A. T. 1969; Studies of fungal growth and intermediary carbon metabolism and non-steady-state conditions. Biotechnology and Bioengineering 11:785–804
    [Google Scholar]
  6. Cébrian-Pérez J. A., Muiño-Blanco T., Pérez-Martos A., López-Pérez M. J. 1989; Characterisation of three enzymatic forms of glucose-6-phosphate dehydrogenase from Aspergillus oryzae. Revista Espanola de Fisiologica 45:271–276
    [Google Scholar]
  7. Davis B. J. 1964; Disc electrophoresis II. Method and applications to human serum proteins. Annals of the New York Academy of Sciences 121:404–427
    [Google Scholar]
  8. Dean P. D. G., Watson D. M. 1979; Protein purification using immobilized triazine dyes. Journal of Chromatography 165:301–319
    [Google Scholar]
  9. Dearriga D., Montero S., Busto F., Soler J. 1986; Partial purification and some kinetic properties of glucose-6-phosphate dehydrogenase from Phycomyces blakesleanus. Biochimie 68:293–302
    [Google Scholar]
  10. Dijkema C., Kester H. C. M., Visser J. 1985; 13C-NMR studies on carbon metabolism in the hyphal fungus Aspergillus nidulans. Proceedings of the National Academy of Sciences of the United States of America 82:14–18
    [Google Scholar]
  11. Dijkema C., Pels Rijcken R., Kester H. C. M., Visser J. 1986; 13C-NMR studies on the influence of pH and nitrogen source on the polyol pool formation in Aspergillus nidulans. FEMS Microbiology Letters 33:125–131
    [Google Scholar]
  12. Goosen T., Bos C. J., Van Den Broek H. W. J. 1992; Transformation and gene manipulation in filamentous fungi; an overview. In Handbook of Applied Mycology 4 Fungal Biotechnology pp. 151–195 Arora D. K., Elander R. P., Mukerji K. G. Edited by New York: Marcel Dekker;
    [Google Scholar]
  13. Hammond J. B. W. 1985; Glucose-6-phosphate dehydrogenase from Agaricus bisporus: purification and properties. Journal of General Microbiology 131:321–328
    [Google Scholar]
  14. Han P. F., Han G. Y., Mcbay H. C., Johnson J. Jr 1980; Inactivation of yeast glucose-6-phosphate dehydrogenase by aspirin. Experientia 36:1149–1150
    [Google Scholar]
  15. Hankinson O. 1974; Mutants of the pentose phosphate pathway in Aspergillus nidulans. Journal of Bacteriology 117:1121–1130
    [Google Scholar]
  16. Holten D., Proscal D., Chang H.-L. 1976; Regulation of the pentose phosphate pathway by the NADP+/NADPH ratio. Biochemical and Biophysical Research Communications 68:436–441
    [Google Scholar]
  17. Van Den Hondel C.A.M.M.J., Punt P. J., Van Gorcom R. F. M. 1992; Production of extracellular proteins by the filamentous fungus Aspergillus. Antonie van Leeuwenhoek 61:153–160
    [Google Scholar]
  18. Hult K. A., Gatenbeck S. 1978; Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. European Journal of Biochemistry 88:607–612
    [Google Scholar]
  19. Jagannathan V., Rangachari P. N., Damodaran M. 1956; Carbohydrate metabolism in citric acid fermentation. 5. Purification and properties of Zwischenferment from A. niger. Biochemical Journal 64:477–481
    [Google Scholar]
  20. Jeffery J., Hobbs L., Jornvall H. 1985; Glucose-6-phosphate dehydrogenase from S. cerevisiae: characterization of a reactive lysine residue labelled with acetylsalicylic acid. Biochemistry 24:666–671
    [Google Scholar]
  21. Kahn A., Boivin P., Rubinson H., Cottreau D., Marie J., Dreyfus J.-C. 1976; Modification of purified glucose-6-phosphate dehydrogenase and other enzymes by a factor of low molecular weight in some leukemic cells. Proceedings of the National Academy of Sciences of the United States of America 73:77–81
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  23. Levy H. R. 1979; Glucose-6-phosphate dehydrogenases. Advances in Enzymology 48:97–192
    [Google Scholar]
  24. Levy H. R., Cook C. 1991; Purification and properties of NADP-linked glucose-6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinium). Archives of Biochemistry and Biophysics 291:161–167
    [Google Scholar]
  25. Löhr G. W., Waller H. D. 1974; Glucose-6-phosphate dehydrogenase. In Methoden der enzymatischen Analyse 1 pp. 673–681 Bergmeyer H. U. Edited by Weinheim: Verlag Chemie GMBH;
    [Google Scholar]
  26. Lumsden J., Coggins J. R. 1977; The subunit structure of the arom multienzyme complex of Neurspora crassa. Biochemical Journal 161:599–607
    [Google Scholar]
  27. Mccullough W., Payton M. A., Roberts C. F. 1977; Carbon metabolism in Aspergillus nidulans. In Genetics and Physiology of Aspergillus pp. 97–129 Smith J. E., Pateman J. A. Edited by New York: Academic Press;
    [Google Scholar]
  28. Malathi S., Shanmugasundaram E. R. B. 1987; Studies on the isolation of glucose-6-phosphate dehydrogenase from A. nidulans. Journal of the Indian Institute of Sciences 7:43–46
    [Google Scholar]
  29. Malcolm A. A., Shepherd M. G. 1972; Purification and properties of Penicillium glucose-6-phosphate dehydrogenase. Biochemical Journal 128:817–831
    [Google Scholar]
  30. Matsuoka N. 1988; Purification of glucose-6-phosphate dehydrogenase from the sea-urchin Hemicentrotus pulcherrimus. Comparative Biochemistry and Physiology 89B:517–520
    [Google Scholar]
  31. Muiño-Blanco T., Cébrian-Pérez J. A., Pérez-Martos A. 1983; Regulation of the oxidative phase of the pentose phosphate pathway in Aspergillus oryzae (Ahlburg). Archives of Microbiology 136:39–41
    [Google Scholar]
  32. Niehaus W. G., Dilts R. P. 1984; Purification of glucose-6-phosphate dehydrogenase from Aspergillus parasiticus. Archives of Biochemistry and Biophysics 228:113–119
    [Google Scholar]
  33. Nishikawa K., Kuwana H. 1985; Deficiency of glucose-6-phosphate dehydrogenase in ace-7 strains of Neurospora crassa. Japanese Journal of Genetics 60:39–52
    [Google Scholar]
  34. Ouchterlony O., Nilson L. A. 1978; Immunodiffusion and immuno-electrophoresis. In Handbook of Experimental Immunology, 3rd edn. pp. 1911–1944 Wein D. M. Edited by Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  35. Pontecorvo G., Roper J. A., Hemmons L. M., Mcdonald K. D., Bufton A. W. J. 1953; The genetics of A. nidulans. Advances in Genetics 5:141–239
    [Google Scholar]
  36. Reuter R., Naumann M., Güttel K., Hofmann E. 1986; Interactions of immobilized and free triazine dyes with glucose-6-phosphate dehydrogenase from yeast. Biomedica Biochemica Acta 45:273–280
    [Google Scholar]
  37. Röber B., Stolle J., Reuter G. 1984; Eigenschaften der Glucose-6-phosphat Dehydrogenase aus der SCP Hefe Candida maltosa H. Zeitschrift für allgemeine Mikrobiologie 24:629–636
    [Google Scholar]
  38. Scott W. A., Tatum E. L. 1970; Glucose-6-phosphate dehydrogenase and Neurospora morphology. Proceedings of the National Academy Sciences of the United States of America 66:515–522
    [Google Scholar]
  39. Scott W. A., Mahony E. 1976; Defects of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in Neurospora and their pleiotropic effects. Current Topics in Cellular Regulation 10:205–236
    [Google Scholar]
  40. Shaw C. R., Prasat R. 1970; Starch gel electrophoresis of enzymes. A compilation of recipes. Biochemical Genetics 4:297–320
    [Google Scholar]
  41. Singh M., Scrutton N. S., Scrutton M. C. 1988; NADPH generation in A. nidulans: is the mannitol cycle involved?. Journal of General Microbiology 134:643–654
    [Google Scholar]
  42. Uitzetter J.H.A.A. 1982 Studies on the carbon metabolism in wild type and mutants of Aspergillus nidulans Thesis Agricultural University Wageningen; The Netherlands:
    [Google Scholar]
  43. Vincenzini M. T., Vanni P., Hanozet G. M., Parenti P., Guerritore A. 1986; Inactivation and degradation of yeast glucose-6-phosphate dehydrogenase selectively modified by pyridoxal-5-phosphate. Enzyme 36:239–246
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-11-2793
Loading
/content/journal/micro/10.1099/00221287-11-2793
Loading

Data & Media loading...

Most cited Most Cited RSS feed