1887

Abstract

The mechanism of resistance to chloramphenicol specified by 18 plasmids from Gram-negative bacteria representing different incompatibility groups was investigated. Most determined the drug-inactivating enzyme chloramphenicol acetyltransferase. The enzymes were purified and their properties were compared with those of the previously characterized enzyme types specified by R429 (type I), s-a (type II) and R387 (type III). The type I enzyme was determined by plasmids representing incompatibility groups FII, C, S, I, H, L, O and Com9. Plasmids from incompatibility groups K, I and the A–C complex specified the type III enzyme, while elements representing incompatibility groups V and W determined the type II variant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-109-2-351
1978-12-01
2021-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/109/2/mic-109-2-351.html?itemId=/content/journal/micro/10.1099/00221287-109-2-351&mimeType=html&fmt=ahah

References

  1. Chabbert Y. A., Scavizzi M. R., Witchitz J. F., Gerbaud G. R., Bouanchaud D. H. 1972; Incompatibility groups and the classification of fi resistance factors. Journal of Bacteriology 112:666–675
    [Google Scholar]
  2. Clowes R. C., Hayes W. 1968 Experiments in Microbial Genetics Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  3. Datta N., Hedges R. W. 1972; R factors identified in Paris, some conferring gentamicin resistance, constitute a new compatibility group. Annales de Vlnstitut Pasteur 123:849–852
    [Google Scholar]
  4. Datta N., Hedges R. W. 1973; R factors of compatibility group A. Journal of General Microbiology 74:335–336
    [Google Scholar]
  5. DattA N., Olarte J. 1974; R factors in strains of Salmonella typhi and Skigella dysenteriae 1 isolated during epidemics in Mexico: classification by compatibility. Antimicrobial Agents and Chemotherapy 5:310–317
    [Google Scholar]
  6. Fittcn J. E., Packman L. C, Harford S., Zaidenzajg Y., Shaw W. V. 1978; Plasmids and the evolution of chloramphenicol resistance. In Microbiology–1978249–252 Schlessinger D. Washington: American Society for Microbiology;
    [Google Scholar]
  7. Foster T. J., Shaw W. V. 1973; Chloramphenicol acetyltransferases specified by fi R factors. Antimicrobial Agents and Chemotherapy 3:99–104
    [Google Scholar]
  8. Foster T. J., Walsh A. 1974; Phenotypic characterization of R-factor tetracycline resistance determinants. Genetical Research 1A333–343
    [Google Scholar]
  9. Gottesman M. M., Rosner J. F. 1975; Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Proceedings of the National Academy of Sciences of the United States of America 725041–5045
    [Google Scholar]
  10. Grindley N. D. F., Humphries G. O., Anderson E. S. 1973; Molecular studies of R factor compatibility groups. Journal of Bacteriology 115:387–398
    [Google Scholar]
  11. Hedges R. W. 1974; R factors from Providence. Journal of General Microbiology 81:171–181
    [Google Scholar]
  12. Hedges R. W. 1975; R factors from Proteus mirabilis and P. vulgaris . Journal of General Microbiology 87:301–311
    [Google Scholar]
  13. Hedges R. W., Datta N. 1971; fi R factors giving chloramphenicol resistance. Nature, London 234:220–221
    [Google Scholar]
  14. Hedges R. W., Jacob A. E. 1974; Transposition of ampicillin resistance from RP4 to other replicens. Molecular and General Genetics 132:31–40
    [Google Scholar]
  15. Hedges R. W., Jacob A. E. 1975; A 98 mega-dalton R factor of compatibility group C in a Vibrio cholerae El Tor isolate from Southern U.S.S.R. Journal of General Microbiology 89:383–386
    [Google Scholar]
  16. Hedges R. W., Datta N., Kontomichalou P., Smith J.T. 1974; Molecular specificities of R factor-determined beta-lactamases: correlation with plasmid compatibility. Journal of Bacteriology 117:56–62
    [Google Scholar]
  17. Hedges R. W., Rodriguez-Lemoine V., Datta N. 1975; R factors from Serratia marcescens . Journal of General Microbiology 86:88–92
    [Google Scholar]
  18. Heffkon F., Rubens C., Falkow S. 1975a; Translocation of a plasmid DNA sequence which mediates ampicillin resistance: molecular nature and specificity of insertion. Proceedings of the National Academy of Sciences of the United States of America 723623–3627
    [Google Scholar]
  19. Heffron F., Sublett R., Hedges R. W., Jacob A., Falkow S. 1975b; Origin of the TEM beta-lactamase gene found on plasmids. Journal of Bacteriology 122:250–256
    [Google Scholar]
  20. Iida S., Arber W. 1977; Plaque forming specialized transducing phage PI: isolation of PICmSmSu, a precursor of PICm. Molecular and General Genetics 153:259–269
    [Google Scholar]
  21. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  22. MacHattie L. F., Jackowski J. B. 1977; Physical structure and deletion effects of the chloramphenicol resistance element Tn9 in phage lambda. In DNA Insertion Elements, Plasmids and Episomes219–228 Bukhari A.I., Shapiro J. A., Adhya S. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Nagai Y., Mitsuhashi A. 1972; New types of R factors incapable of inactivating chloramphenicol. Journal of Bacteriology 109:1–7
    [Google Scholar]
  24. Richmond M. H., Weidemann B. 1974; Plasmids and bacterial evolution. Symposia of the Society for General Microbiology 24:59–85
    [Google Scholar]
  25. Rosner J. L., Gottesman M. M. 1977; Transposition and deletion of Tn9, a transposable element carrying a gene for chloramphenicol resistance. In DNA Insertion Elements, Plasmids and Episomes213–218 Bukhari A. I., Shapiro J. A., Adhya S. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Shapiro J. A., Sporn P. 1977; Tn402: a new transposable element determining trimethoprim resistance that inserts in bacteriophage lambda. Journal of Bacteriology 129:1632–1635
    [Google Scholar]
  27. Shaw W. V. 1967; The enzymic acetylation of chloramphenicol by extracts of R-factor-resistant Escherichia coli . Journal of Biological Chemistry 242:687–693
    [Google Scholar]
  28. Shaw W. V., Brodsky R. F. 1968; Characterization of chloramphenicol acetyltransferase from chloramphenicol resistant Staphylococcus aureus . Journal of Bacteriology 95:28–36
    [Google Scholar]
  29. Shaw W. V., Sands L. C., Datta N. 1972; Hybridization of variants of chloramphenicol acetyltransferases specified by fi + and ft R factors. Proceedings of the National Academy of Sciences of the United States of America 693049–3053
    [Google Scholar]
  30. Stanisich V. A., Bennett P. M., Ortiz J. M. 1976; A molecular analysis of transductional marker rescue involving P-group plasmids in Pseudomonas aeruginosa . Molecular and General Genetics 143:333–337
    [Google Scholar]
  31. Suzuki Y., Okamoto S. 1967; The enzymic acetylation of chloramphenicol by the multiple drug-resistant Escherichia coli carrying R factor. Journal of Biological Chemistry 242:4722–4730
    [Google Scholar]
  32. Zaidenzaig Y., Shaw W. V. 1976; Affinity and hydrophobic chromatography of three variants of chloramphenicol acetyltransferase specified by R factors in Escherichia coli . FEBS Letters 62:266–271
    [Google Scholar]
  33. Zaidenzaig Y., Shaw W. V. 1978; The reactivity of sulphydryl groups at the active site of an R factor-specified variant of chloramphenicol acetyltransferase. European Journal of Biochemistry 83:553–562
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-109-2-351
Loading
/content/journal/micro/10.1099/00221287-109-2-351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error