1887

Abstract

Four Gram-negative, non-sporulating, aerobic, obligate thermophilic bacteria, isolated from non-thermal environments by enrichment with -heptadecane as substrate, utilized -alkanes, carbohydrates and organic acids as sole source of carbon and energy and also grew on complex media. The growth rate of these organisms, when utilizing -heptadecane as substrate, was markedly increased by adding a low concentration (7·5 mg l) of yeast extract. They grew optimally between 55 and 65 °C, and at a pH between 6·2 and 7·5. The mol% G + C for all was between 51 and 58. On the basis of the amino acid and amino sugar compositions of their peptidoglycan, these organisms and other Gram-negative thermophilic bacteria can be divided into four distinct groups. Group A includes the newly isolated hydrocarbon-utilizing bacteria which have nearly equimolar amounts of glutamic acid, alanine, diaminopimelic acid and glucosamine. Group B consists of obligate hydrocarbon-utilizing microbes that have lower molar ratios of glutamic acid and diaminopimelic acid, and contain either ornithine or lysine. The previously isolated non-hydrocarbon-utilizing thermophiles (-2, -1, -1) and a newly isolated organism from a hot spring comprise group C and contain glycine, ornithine, no diaminopimelic acid, and much lower molar ratios of glutamic and muramic acids than in groups A and B. lacked peptidoglycan and is placed separately in group D.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-109-1-141
1978-11-01
2021-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/109/1/mic-109-1-141.html?itemId=/content/journal/micro/10.1099/00221287-109-1-141&mimeType=html&fmt=ahah

References

  1. Allen M. B. 1953; The thermophilic aerobic sporeforming bacteria. Bacteriological Reviews 17:125–173
    [Google Scholar]
  2. Brock T. D., Freeze H. 1969; Thermus aquaticus gen.n. and sp.n., a nonsporulating extreme thermophile. Journal of Bacteriology 98:289–297
    [Google Scholar]
  3. Conn H. J. 1957 Manual of Microbiological Methods New York: McGraw-Hill;
    [Google Scholar]
  4. Eimhjellen K. E., Jensen S. L. 1964; The biosynthesis of carotenoids in Rhodopseudomonas gelatinosa. Biochimica et biophysica acta 82:21–40
    [Google Scholar]
  5. Farrell J., Campbell L. L. 1969; Thermophilic bacteria and bacteriophages. Advances in Microbial Physiology 3:83–109
    [Google Scholar]
  6. Freese E. B., Cole R. M., Klofat W., Freese E. 1970; Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis. Journal of Bacteriology 101:1046–1062
    [Google Scholar]
  7. Jackson T. J., Ramaley R. F., Meinschein W. G. 1973; Thermomicrobium, a new genus of extremely thermophilic bacteria. International Journal of Systematic Bacteriology 23:28–36
    [Google Scholar]
  8. Janssen F. W., Lund A. J., Anderson L. E. 1958; Colorimetric assay for dipicolinic acid in bacterial spores. Science 127:26–27
    [Google Scholar]
  9. Kellenberger E. A., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. Journal of Biophysical and Biochemical Cytology 4:671–678
    [Google Scholar]
  10. Kennedy R. S., Finnerty W. R., Sudarsanan K., Young A. 1975; Microbial assimilation of hydrocarbons. I. The fine structure of a hydrocarbon oxidizing Acinetobacter sp. Archives of Microbiology 102:75–83
    [Google Scholar]
  11. Klug M. J., Markovetz A. J. 1967; Thermophilic bacterium isolated on n-tetradecane. Nature, London 215:1082–1083
    [Google Scholar]
  12. Loginova L. G., Egorova L. G. 1974; An obligately thermophilic bacterium Thermus ruber from hot springs in Kamchatka. Mikrobiologiya 44:661–665
    [Google Scholar]
  13. Lugtenberg B., Bronstein H., Van Selm N., Peters R. 1977; Peptidoglycan-associated outer membrane proteins in gram-negative bacteria. Biochimica et biophysica acta 465:571–578
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3:208–218
    [Google Scholar]
  15. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  16. Merkel G. J., Underwood W. C., Perry J. J. 1978; Isolation of thermophilic bacteria capable of growth solely on long-chain hydrocarbons. FEMS Microbiology Letters 3:81–83
    [Google Scholar]
  17. Murrell W. G., Warth A. D. 1965; Composition and heat resistance of bacterial spores. In Spores III1–24 Campbell L. L., Halvorson H. O. Washington, D. C.: American Society for Microbiology;
    [Google Scholar]
  18. Novitsky T. J., Chan M., Himes R. H., Akagi J. M. 1974; Effect of temperature on the growth and cell wall chemistry of a facultative thermophilic Bacillus. Journal of Bacteriology 117:858–865
    [Google Scholar]
  19. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb.nov., a non-sporulating thermophilic bac-terium from a Japanese thermal spa. International Journal of Systematic Bacteriology 1A:102–112
    [Google Scholar]
  20. Pask-Hughes R., Williams R. A. D. 1975; Extremely thermophilic Gram-negative bacteria from hot tap water. Journal of General Microbiology 88:321–328
    [Google Scholar]
  21. Pask-Hughes R. A., Williams R. A. D. 1978; Cell envelope components of strains belonging to the genus Thermus. Journal of General Micro-biology 107:65–72
    [Google Scholar]
  22. Phillips W. E., Perry J. J. 1976; Thermomicrobium fosteri sp.nov., a hydrocarbon-utilizing obligate thermophile. International Journal of Systematic Bacteriology 26:220–225
    [Google Scholar]
  23. Ramaley R. F., Hixson J. 1970; Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. Journal of Bacteriology 103:527–528
    [Google Scholar]
  24. Ramaley R. F., Bitzinger K., Carroll R. M., Wilson R. B. 1975; Isolation of a new pink, obligate thermophilic, gram-negative bacterium (k-2 isolate). International Journal of Systematic Bacteriology 25:357–364
    [Google Scholar]
  25. Saiki T., Kimura R., Arima K. 1972; Isolation and characterization of extremely thermophilic bacteria from hot springs. Agricultural and Biological Chemistry 36:2357–2366
    [Google Scholar]
  26. Schleifer K. H., Kandler O. 1972; Peptido-glycan types of bacterial cell walls and their taxonomic implications. Bacteriological Reviews 36:407–477
    [Google Scholar]
  27. Scott C. C. L., Finnerty W. R. 1976; Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acineto-bacter species ho1-n . Journal of Bacteriology 127:481–489
    [Google Scholar]
  28. Scott C. C. L., Makula R. A., Finnerty W. R. 1976; Isolation and characterization of membranes from a hydrocarbon-oxidizing Acineto-bacter sp. Journal of Bacteriology 127:469–480
    [Google Scholar]
  29. Vestal J. R., Perry J. J. 1969; Divergent metabolic pathways for propane and propionate utilization by a soil isolate. Journal of Bacteriology 99:216–221
    [Google Scholar]
  30. Warth A. D. 1965; Composition of mucopep-tides from the spores of Bacillus coagulans. Biochimica et biophysica acta 101:315–326
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-109-1-141
Loading
/content/journal/micro/10.1099/00221287-109-1-141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error