Inhibition by Mercurial Reagents and Role of SH Groups of the Adenosine Triphosphatase from 414 Membranes Free

Abstract

Mercurials selectively inhibited 414 ATPase (EC 3.6.1.3). Inhibition of the soluble ATPase (BF) was greater than for the membrane-bound enzyme. The titration of 4 SH groups per mol BF with 0.05 m--chloromercuri[C]benzoate showed a good dose-response curve for the inhibition of basal ATPase but not for the trypsin-stimulated activity. Accessible SH groups did not seem to be related to the active site of the enzyme. Mercurials appeared to affect ATPase by inducing a molecular change in the holo-enzyme, followed by dissociation. One to two SH groups with different degrees of accessibility were located in the and subunits of ATPase (BF) but only one was located in the subunit, irrespective of the concentration of -chloromercuribenzoic acid, suggesting a structural role for SH groups in BF.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-108-2-239
1978-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/108/2/mic-108-2-239.html?itemId=/content/journal/micro/10.1099/00221287-108-2-239&mimeType=html&fmt=ahah

References

  1. Abrams A., Smith J. B. 1974; Bacterial membrane ATPase. The Enzymes X395–429 Boyer P. D. New York and London: Academic Press;
    [Google Scholar]
  2. Ahlers J., Kabisch D., Gunther T. 1975; The functional groups of the Mg-Ca ATPase from Escherichia coli . Canadian Journal of Biochemistry 5:658–665
    [Google Scholar]
  3. Andreu J. M., Muñoz E. 1975; Micrococcus lysodeikticus ATPase. Purification by preparative gel electrophoresis and subunit structure studied by urea and sodium dodecylsulfate gel electrophoresis. Biochimica et biophysica acta 387:228–233
    [Google Scholar]
  4. Andreu J. M., Albendea J. A., Muñoz E. 1973; Membrane adenosine triphosphatase of Micrococcus lysodeikticus Molecular properties of the purified enzyme unstimulated by trypsin. European Journal of Biochemistry 37:505–515
    [Google Scholar]
  5. Azocar O., Muñoz E. 1976; Molecular organization in bacterial cell membranes. Sulphydryl groups and disulfide bridges in Streptomyces albus and Escherichia coli k12 cytoplasmic membranes. European Journal of Biochemistry 68:245–254
    [Google Scholar]
  6. Azocar O., Muñoz E. 1977; Extrinsic and intrinsic factors that influence inactivation and purification of the unstable adenosine triphosphatase solubilized from membranes of an Escherichia coli k12 strain. Biochimica et biophysica acta 482:438–452
    [Google Scholar]
  7. Baird B. A., Hammes G. G. 1976; Chemical cross-linking studies of chloroplast coupling factor 1. Journal of Biological Chemistry 251:6953–6962
    [Google Scholar]
  8. Baird B. A., Hammes G. G. 1977; Chemical cross-linking studies of beef heart mitochondrial coupling factor 1. Journal of Biological Chemistry 252:4743–4748
    [Google Scholar]
  9. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analytical Biochemistry 1:279–285
    [Google Scholar]
  10. Carreira J., Muñoz E. 1975; Membrane bound and soluble adenosine triphosphatase of Escherichia coli k12. Kinetic properties of the basal and trypsin-stimulated activities. Molecular and Cellular Biochemistry 9:85–95
    [Google Scholar]
  11. Carreira J., Leal J. A., Rojas M., Muñoz E. 1973; Membrane ATPase of Escherichia coli k12. Selective solubilization of the enzyme and its stimulation by trypsin in the soluble and membrane-bound states. Biochimica et biophysica acta 307:541–556
    [Google Scholar]
  12. Carreira J., Andreu J. M., Nieto M., Muñoz E. 1976; Membrane adenosine triphosphatase of Micrococcus lysodeikticus Isolation of two forms of the enzyme complex and correlation between enzymatic stability, latency and activity. Molecular and Cellular Biochemistry 10:67–76
    [Google Scholar]
  13. Carreira J., Andreu J. M., Muñoz E. 1977; Differential sensitivity to trypsin digestion of purified forms of Micrococcus lysodeikticus ATPase (BF1). A study of their structural and conformational differences and mechanism of conversion. Biochimica et biophysica acta 492:387–398
    [Google Scholar]
  14. Corao M. de, Serrano J. A., Leal J. A., Puig J., Muñoz E. 1974; Isolation of murein-free spheroplast ‘ghosts’ from a strain of Escherichia coli k12. Microbiologia espanola 27:283–298
    [Google Scholar]
  15. Evans D. J. Jr 1969; Membrane adenosine triphosphatase of Escherichia coli: activation by calcium ions and inhibition by monovalent cations. Journal of Bacteriology 100:914–922
    [Google Scholar]
  16. Farron F., Racker E. 1970; Studies on the mechanism of the conversion of coupling factor 1 from chloroplasts to an active adenosine triphosphatase. Biochemistry 9:3829–3836
    [Google Scholar]
  17. Gunther T., Pellnitz W., Maris G. 1974; Effect of salts on the activity and inhibition of E. coli membrane ATPase by ethacrynic acid and inhibitors. Zeitschrift für Naturforschung 29:54–59
    [Google Scholar]
  18. Kobayashi H., Anraku Y. 1972; Membrane-bound adenosine triphosphatase of Escherichia coli I. Partial purification and properties. Journal of Biochemistry 71:387–399
    [Google Scholar]
  19. Krakow J. S., Goolsby S. P. 1971; A membrane filter assay for protein sulphydryl groups. Biochemical and Biophysical Research Communications 44:453–458
    [Google Scholar]
  20. Monteil H., Roussel G., Boulouis D. 1975; Membrane ATPase of Proteus l-forms. Solubilization and molecular properties. Biochimica et biophysica acta 382:465–478
    [Google Scholar]
  21. Muñoz E., Salton M. R. J., Ng M. H., Schor M. T. 1969; Membrane adenosine triphosphatase of Micrococcus lysodeikticus Purification, properties of the ‘soluble’ enzyme and properties of the membrane-bound enzyme. European Journal of Biochemistry 7:490–501
    [Google Scholar]
  22. Nelson N. 1976; Structure and function of chloroplast ATPase. Biochimica et biophysica acta 456:314–338
    [Google Scholar]
  23. Nelson N., Kanner B. I., Gutnick D. L. 1974; Purification and properties of Mg+2-Ca2+ adenosine triphosphatase from Escherichia coli . Proceedings of the National Academy of Sciences of the United States of America 712720–2724
    [Google Scholar]
  24. Pedersen P. L. 1975; Mitochondrial adenosine triphosphatase. Journal of Bioenergetics 6:243–275
    [Google Scholar]
  25. Pedersen P. L. 1976; Adenosine triphosphatase from rat liver mitochondria. Evidence for a mercurial-sensitive site for the activating anion bicarbonate. Biochemical and Biophysical Research Communications 71:1182–1188
    [Google Scholar]
  26. Penefsky H. S. 1974; Mitochondrial and chloroplast ATPases. The Enzymes X375–394 Boyer P. D. New York and London: Academic Press;
    [Google Scholar]
  27. Senior A. E. 1975; Relationship of cysteine and tyrosine residues to adenosine triphosphate hydrolysis by mitochondrial adenosine triphosphatase. Biochemistry 12:3622–3627
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-108-2-239
Loading
/content/journal/micro/10.1099/00221287-108-2-239
Loading

Data & Media loading...

Most cited Most Cited RSS feed