1887

Abstract

The biosynthesis of a yellow–green, fluorescent, water-soluble pigment by occurred only when the bacteria were iron-deficient and was not directly influenced by the nature of the organic carbon source. The pigment formed a very stable Fe complex and was purified in this form. produced only one molecular species of fluorescent pigment; however, its lability under mild alkaline conditions led to the formation of several pigmented decomposition products. The spectral properties of the pure pigment, its molecular weight (1500 ± 75) and its stability constant for Fe (of the order of 10) were determined. Both its biosynthesis and its chemical properties (formation of a stable Fe complex) suggest that the fluorescent pigment is a desferrisiderophore.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-107-2-319
1978-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/107/2/mic-107-2-319.html?itemId=/content/journal/micro/10.1099/00221287-107-2-319&mimeType=html&fmt=ahah

References

  1. Anderegg G., L’Eplattenier F., Schwarzen-bach G. 1963; Hydroxamatkomplexe: III. Eisen(III)–Austausch zwischen Sideraminen und Komplexonen. Diskussion der Bildungskon-stanten der Hydroxamatkomplexe. Helvetica chimica acta 46:1409–1422
    [Google Scholar]
  2. Baghdiantz A. 1952; Role of zinc in appearance of component II of the pigment of Pseudomonas fluorescens (Flügge-Migula). Archives des sciences, Genève 5:47–48
    [Google Scholar]
  3. Birkhoffer L., Birkhoffer A. 1948; Ribo-flavine, a component of ‘bacterial fluorescein’. Zeitschrift für Naturforschung 3b:136
    [Google Scholar]
  4. Blanchetière A. 1920; Action du Bacillus fluorescent liquefiant de Fliigge sur l’asparagine en milieu chimiquement defini. Annales de l’ Institut Pasteur 34:392–411
    [Google Scholar]
  5. Chakrabarty A. M., Roy S. C. 1964a; Effect of trace elements on the production of pigments by a pseudomonad. Biochemical Journal 93:228–231
    [Google Scholar]
  6. Chakrabarty A. M., Roy S. C. 1964b; Characterization of a pigment from a pseudomonad. Biochemical Journal 93:144–148
    [Google Scholar]
  7. Charlot G. 1961 Analyse Qualitative Rapide des Cations et des Anions Paris: Dunod;
    [Google Scholar]
  8. Chodat F., Gouda S. 1961; Contribution à l’étude du pigment de Pseudomonas fluorescens Migula. Pathologia et microbiologia 24:840–847
    [Google Scholar]
  9. Elliot R. P. 1958; Some properties of Pyoverdine, the water-soluble pigment of the pseudomonads. Applied Microbiology 6:241–246
    [Google Scholar]
  10. Favre J., Greppin H. 1971; Séparation de l’extrait pigmentaire de Pseudomonas fluorescens sur gel de Sephadex G25. Saussurea 2:25–28
    [Google Scholar]
  11. Georgia F. R., Poe C. F. 1931; Study of bacterial fluorescence in various media. I. Inorganic substances necessary for bacterial fluorescence. Journal of Bacteriology 22:349–361
    [Google Scholar]
  12. Giral F. 1936; Sobre los liocromos característicos del grupo de bacterias fluorescentes. Anales de la Sociedad española de física y química 34:667–693
    [Google Scholar]
  13. Gouda S., Chodat F. 1963; Glyoxylate et succinate, facteurs déterminant respectivement l’hypochromie et l’hyperchromie des cultures de Pseudomonas fluorescens. Pathologia et microbiologia 26:655–664
    [Google Scholar]
  14. Gouda S., Greppin H. 1965; Biosynthèse pigmentaire chez Pseudomonas fluorescens en fonction de la concentration du substrat hydrocarboné ouaminé. Archives des sciences, Genève 18:716–721
    [Google Scholar]
  15. Greppin H., Gouda S. 1965; Action de la lumieresur le pigment de Pseudomonas fluorescens Migula. Archives des sciences, Genève 18:721–725
    [Google Scholar]
  16. Hulcher F. H. 1968; Activation of 6-phospho-gluconate dehydrase by Pyoverdine. Biochemical and Biophysical Research Communications 31:247–251
    [Google Scholar]
  17. Keller-Schierlein W., Prelog V., Zähne H. 1964; Siderochrome. (Natürliche Eisen(III)–trihydroxamat-Komplexe). Fortschritte der Chemie organischer Naturstoffe 22:279–322
    [Google Scholar]
  18. King J. V., Campbell J. J. R., Eagles B. A. 1948; Mineral requirements for fluorescin production by Pseudomonas. Canadian Journal of Research 26C:514–519
    [Google Scholar]
  19. Koepsell J. 1950; Gluconate oxidation by Pseudomonas fluorescens. Journal of Biological Chemistry 186:743–751
    [Google Scholar]
  20. Lenhoff H. M. 1963; An inverse relationship of the effects of oxygen and iron on the production of fluorescin and cytochrome c by Pseudomonas fluorescens. Nature, London 199:601–602
    [Google Scholar]
  21. Lepierre C. 1895; Recherches sur la fraction fluorescinogène des microbes. Annales de l’ Institut Pasteur 8:643–663
    [Google Scholar]
  22. Lluch C., Callao V., Olivares J. 1973; Pigment production by Pseudomonas reptilivora. I. Effect of iron concentration in culture media.. Archiv für Mikrobiologie 93:239–243
    [Google Scholar]
  23. Love S. H., Hulcher F. H. 1964; Green fluorescent pigment accumulated by a mutant of Cellvibrio gilvus. Journal of Bacteriology 87:39–45
    [Google Scholar]
  24. Meyer J. M., Hornsperger J. M. 1978; Role of pyoverdinePf, the iron-binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. Journal of General Microbiology 107:329–331
    [Google Scholar]
  25. Michea M., Greppin H. 1974; Separation et évolution du complexe pigmentaire de Pseudomonas fluorescens Migula. Comptes rendus de la Société d’histoire naturelle de Genève 8:19–31
    [Google Scholar]
  26. Neilands J. B. 1973; Microbial iron transport compounds (siderochromes). In Inorganic Biochemistry I167–209 Eichhorn G. L. Amsterdam: Elsevier;
    [Google Scholar]
  27. Palleroni N. J., Doudoroff M. 1974; The genus Pseudomonas. In Bergey’s Manual of Determinative Bacteriology, 8th.217–243 Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  28. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid hom-ologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23:333–339
    [Google Scholar]
  29. Palumbo S. A. 1972; Role of iron and sulfur in pigment and slime formation by Pseudomonas aeruginosa. Journal of Bacteriology 111:430–436
    [Google Scholar]
  30. Rosotti J. C., Rosotti H. 1961 The Determination of Stability Constants New York: McGraw Hill;
    [Google Scholar]
  31. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  32. Sullivan M. X. 1905; Synthetic culture media and the biochemistry of bacterial pigments. Journal of Medical Research 14:109–160
    [Google Scholar]
  33. Theodore J. S., Schade A. L. 1965; Growth of Staphylococcus aureus in media of restricted and unrestricted inorganic iron availability. Journal of General Microbiology 39:75–83
    [Google Scholar]
  34. Totter J. R., Moseley F. T. 1953; Influence of the concentration of iron on the production of Fluorescin by Pseudomonas aeruginosa. Journal of Bacteriology 65:45–47
    [Google Scholar]
  35. Turfreijer A. 1942 Pyoverdinen de groene fluorescende Kleurstoffen van Pseudomonas fluorescens Thesis, University of Amsterdam. British Abstracts; 1616578
    [Google Scholar]
  36. Waring W. S., Werkman C. H. 1942; Growth of bacteria in an iron-free medium. Archives of Biochemistry 1:303–310
    [Google Scholar]
  37. Wurtz B. 1954; Antagonisme entre les bacteries lactiques et protéolytiques des ensilages. Conférence Européenne des HerbagesParis288–297
    [Google Scholar]
  38. Zähne H., Keller-Schierlein W., Hutter R., Hess-Leisinger K., Deer A. 1963; Sider-amine aus Aspergillaceen. Archiv für Mikrobiologie 45:119–135
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-107-2-319
Loading
/content/journal/micro/10.1099/00221287-107-2-319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error