1887

Abstract

VPI4330-1 is an anaerobic organism which has no superoxide dismutase, catalase or peroxidase. It can be protected from the toxic effects of oxygen by catalase in the culture medium. In order to elucidate its mechanisms of oxygen tolerance, the effect of oxygen on the metabolic activity of the organism was studied.

In salt solution supplemented with glucose or pyruvate the organism had a more rapid metabolic rate under aerobic conditions than under anaerobic conditions. There were also significant differences in metabolic end-products obtained under aerobic and anaerobic conditions. The crude cell-free extract had NADH oxidase activity, which reduced oxygen to water, and NADPH oxidase activity, which reduced oxygen to superoxide radicals and hydrogen peroxide. The former specific activity was much higher than the latter.

The results indicate that the main product of intracellular oxygen reactions was water. Deleterious products such as superoxide radicals and hydrogen peroxide were only formed to a limited extent. NADH oxidase may fulfil an important protective role in this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-107-2-235
1978-08-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/107/2/mic-107-2-235.html?itemId=/content/journal/micro/10.1099/00221287-107-2-235&mimeType=html&fmt=ahah

References

  1. Anders R. F., Hogg D. M., Jago G. R. 1970; Formation of hydrogen peroxide by group N streptococci and its effect on their growth and metabolism. Applied Microbiology 19:608–612
    [Google Scholar]
  2. Andreesen J. R., Ljungdahl L. G. 1974; Nicotinamide adenine dinucleotide phosphatedependent formate dehydrogenase from Clostridium thermoaceticum : purification and properties. Journal of Bacteriology 120:6–14
    [Google Scholar]
  3. Bartlett J. G., Sullivan-Sigler N., Louie T. J., Gorbach S. L. 1976; Anaerobes survive in clinical specimens despite delayed processing. Journal of Clinical Microbiology 3:133–136
    [Google Scholar]
  4. Bergmeyer H. U., Gawehn K., Grassl M. 1970; Die biochemischen Reagentien. I. Enzyme. Methoden der Enzymatischen Analyse, 2.388–483 Bergmeyer H. U. Weinheim, Germany: Verlag Chemie;
    [Google Scholar]
  5. Bernt E., Bergmeyer H. U. 1965; l-Glutamate determination with glutamic dehydrogenase. Methods of Enzymatic Analysis384–388 Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  6. Boll M. 1968; Oxydation von reduziertem Nikotinamid-Adenin-Dinucleotid in Rhodospirillum rubrum 1. Charakterisierung einer Iöslischen NADH-Dehydrogenase. Archiv für Mikrobiologie 62:94–110
    [Google Scholar]
  7. Bonnichsen R. 1965; Ethanol determination with alcohol dehydrogenase and DPN. Methods of Enzymatic Analysis285–287 Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  8. Boulanger P., Osteux R. 1965; d-Amino acids. Methods of Enzymatic Analysis367–372 Bergmeyer H. U. New York: Academie Press;
    [Google Scholar]
  9. Bücher T., Czok R., Lamprecht W., Latzko E. 1965; Pyruvate. Methods of Enzymatic Analysis253–259 Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  10. Carlsson J. 1972; Simplified gas chromatographic procedure for identification of bacterial metabolic products. Applied Microbiology 25:287–289
    [Google Scholar]
  11. Carlsson J., Frölander F., Sundqvist G. 1977; Oxygen tolerance of anaerobic bacteria isolated from necrotic dental pulps. Acta odontologica Scandinavica 35:139–145
    [Google Scholar]
  12. Coles R. S. 1975; The effect of coenzyme leakage and replacement on the growth and metabolism of two fusobacteria. Journal of General Microbiology 86:147–155
    [Google Scholar]
  13. Coles R. S. 1977; Glucose utilization by resting cells of Fusobacterium polymorphum . Archives of Oral Biology 22:87–90
    [Google Scholar]
  14. Czerkawski J. W., Clapperton J. L. 1968; Analysis of gases produced by metabolism of micro-organisms. Laboratory Practice 17:994–997
    [Google Scholar]
  15. Dolin M. I. 1953; The oxidation and peroxidation of DPNH2 in extracts of Streptococcus faecalis 10c1. Archives of Biochemistry and Biophysics 46:483–485
    [Google Scholar]
  16. Dolin M. I. 1955; The DPNH-oxidizing enzymes of Streptococcus faecalis II. The enzymes utilizing oxygen, cytochrome c peroxide and 2,6-dichloro- phenol-indophenol or ferricyanide as oxidants. Archives of Biochemistry and Biophysics 55:415–435
    [Google Scholar]
  17. Dolin M. I. 1957; The Streptococcus faecalis oxidases for reduced diphosphopyridine nucleotide. III. Isolation and properties of a flavin peroxidase for reduced diphosphopyridine nucleotide. Journal of Biological Chemistry 225:557–573
    [Google Scholar]
  18. Dolin M. 1. 1959; Oxidation of reduced diphosphopyridine nucleotide by Clostridium perfringens 1. Relation of peroxide to the overall reaction. Journal of Bacteriology 77:383–392
    [Google Scholar]
  19. Dolin M. I. 1977; DPNH peroxidase: effector activities of DPN+ . Biochemical and Biophysical Research Communications 78:393–400
    [Google Scholar]
  20. Frölander F., Carlsson J. 1977; Bactericidal effect of anaerobic broth exposed to atmospheric oxygen tested on Peptostreptococcus anaerobius . Journal of Clinical Microbiology 6:117–123
    [Google Scholar]
  21. Gawehn K., Bergmeyer H. U. 1970; d-(-)- Lactat. Methoden der Enzymatischen Analyse, 2.1450–1453 Bergmeyer H. U. Weinheim, Germany: Verlag Chemie;
    [Google Scholar]
  22. Gregory E. M., Fridovich I. 1974; Oxygen metabolism in Lactobacillus plantarum . Journal of Bacteriology 117:166–169
    [Google Scholar]
  23. Griffith C. J., Carlsson J. 1974; Mechanism of ammonia assimilation in streptococci. Journal of General Microbiology 82:253–260
    [Google Scholar]
  24. Hohorst H.-J. 1965; l-(+)-Lactate determination with lactic dehydrogenase and DPN. Methods of Enzyniatic Analysis266–270 Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  25. Holdeman L. V., Moore W. E. C. 1975 Anaerobe Laboratory Manual, 3. Blacksburg, Virginia: Virginia Polytechnic Institute and State University;
    [Google Scholar]
  26. Hoshino E., Yamada T., Araya S. 1976; Lactate degradation by a strain of Neisseria isolated from human dental plaque. Archives of Oral Biology 21:677–683
    [Google Scholar]
  27. Hoskins D. D., Whiteley H. R., Mackler B. 1962; The reduced diphosphopyridine nucleotide oxidase of Streptococcus faecalis: purification and properties. Journal of Biological Chemistry 237:2647–2651
    [Google Scholar]
  28. Kawai K., Yashima S., Okami Y., Sasaki Y. 1971; Aerobic dissimilation of glucose by heterolactic bacteria. 1. Reduced pyridine nucleotide-oxidizing enzymes in Leuconostoc mesenteroides . Journal of General and Applied Microbiology 17:51–62
    [Google Scholar]
  29. King T. E., Howard R. L. 1967; Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. Methods in Enzymology 10:275–294
    [Google Scholar]
  30. Loesche W. J. 1969; Oxygen sensitivity of various anaerobic bacteria. Applied Microbiology 18:723–727
    [Google Scholar]
  31. Low E. I., Zimkus S. M. 1973; Reduced nicotinamide adenine dinucleotide oxidase activity and H2O2 formation of Mycoplasma pneumoniae . Journal of Bacteriology 116:346–354
    [Google Scholar]
  32. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  33. McCord J. M., Fridovich I. 1969; Superoxide dismutase, an enzymatic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244:6049–6055
    [Google Scholar]
  34. Minakami S., Ringler R. L., Singer T. P. 1962; Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase. Journal of Biological Chemistry 237:569–576
    [Google Scholar]
  35. Mizushima S., Kitahara K. 1962; Purification and properties of DPNH peroxidase in Lactobacillus casei . Journal of General and Applied Microbiology 8:56–62
    [Google Scholar]
  36. Morris J. G. 1975; The physiology of obligate anaerobiosis. Advances in Microbial Physiology 12:169–246
    [Google Scholar]
  37. Morris J. G. 1976; Oxygen and the obligate anaerobe. Journal of Applied Bacteriology 40:229–244
    [Google Scholar]
  38. Möller Å. J. R. 1966 Microbiological examination of root canals and periapical tissues of human teeth Göteborg: Akademiforlaget;
    [Google Scholar]
  39. O’Brien R. W., Morris J. G. 1971; Oxygen and the growth and metabolism of Clostridium acetobutylicum . Journal of General Microbiology 68:307–318
    [Google Scholar]
  40. Ottenstein D. M., Bartley D. A. 1971; Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry 43:952–955
    [Google Scholar]
  41. Pritchard G. G., Wimpenny J. W. T., Morris H. A., Lewis M. W. A., Hughes D. E. 1977; Effects of oxygen on Propionibacterium shermanii grown in continuous culture. Journal of General Microbiology 102:223–233
    [Google Scholar]
  42. Robinson J., Cooper J. M. 1970; Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Analytical Biochemistry 33:390–399
    [Google Scholar]
  43. Seegmiller J. E. 1955; TPN-linked aldehyde dehydrogenase from yeast. Methods in Enzymology 1:511–514
    [Google Scholar]
  44. Slein M. W. 1965; d-Glucose determination with hexokinase and glucose-6-phosphate dehydrogenase. Methods of Enzymatic Analysis117–123 Bergmeyer H. U. New York: Academic Press;
    [Google Scholar]
  45. Tally F. P., Stewart R. P., Sutter V. L., Rosenblatt J. E. 1975; Oxygen tolerance of fresh clinical anaerobic bacteria. Journal of Clinical Microbiology 1:161–164
    [Google Scholar]
  46. de Vries W., Stouthamer A. H. 1969; Factors determining the degree of anaerobiosis of Bifidobacterium strains. Archiv für Mikrobiologie 65:275–287
    [Google Scholar]
  47. Walker G. A., Kilgour G. L. 1965; Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. II. Oxidase and peroxidase. Archives of Biochemistry and Biophysics 111:534–539
    [Google Scholar]
  48. Yamada T., Carjlsson J. 1975; Regulation of lactate dehydrogenase and change of fermentation products in streptococci. Journal of Bacteriology 124:55–61
    [Google Scholar]
/content/journal/micro/10.1099/00221287-107-2-235
Loading
/content/journal/micro/10.1099/00221287-107-2-235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error