1887

Abstract

was cultured chemolithotrophically under aerobic and anaerobic conditions in a chemostat with thiosulphate, nitrate or nitrite as limiting nutrient. Estimations of growth yields and maintenance coefficients showed that grew more efficiently than other thiobacilli both aerobically and anaerobically. Relative growth yield data enabled the probable amounts of ATP generated during thiosulphate-limited aerobic growth and nitrate-limited anaerobic growth on thiosulphate to be calculated as, respectively, 6 to 7 and 4 to 5 mol ATP formed per mol thiosulphate oxidized. The energy available from tetrathionate oxidation was almost twice that from thiosulphate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-107-1-123
1978-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/107/1/mic-107-1-123.html?itemId=/content/journal/micro/10.1099/00221287-107-1-123&mimeType=html&fmt=ahah

References

  1. Adams C. A., Warnes G. M., Nicholas D. J. D. 1971; A sulphite-dependent nitrate reductase from Thiobacillus denitrificans . Biochimica et biophysica acta 235:398–106
    [Google Scholar]
  2. Aminuddin M., Nicholas D. J. D. 1973; Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans . Biochimica et biophysica acta 325:81–93
    [Google Scholar]
  3. Aminuddin M., Nicholas D. J. D. 1974a; An AMP-independent sulphite oxidase from Thiobacillus denitrificans: purification and properties. Journal of General Microbiology 82:103–113
    [Google Scholar]
  4. Aminuddin M., Nicholas D. J. D. 1974b; Electron transfer during sulphide and sulphite oxidation in Thiobacillus denitrificans . Journal of General Microbiology 82:115–123
    [Google Scholar]
  5. Aubert J., Millet J., Milhaud G. 1959; Isolation and properties of cytochrome c from Thiobacillus denitrificans . Annales de l’Institut Pasteur 96:559–576
    [Google Scholar]
  6. Baalsrud K., Baalsrud K. S. 1952; The role of phosphate in carbon dioxide assimilation of thiobacilli. Phosphorus Metabolism 2544–576 McElroy W. D., Glass B. Baltimore: Johns Hopkins Press;
    [Google Scholar]
  7. Baalsrud K., Baalsrud K. S. 1954; Studies on Thiobacillus denitrificans . Archiv für Mikro-biologie 20:34–62
    [Google Scholar]
  8. Bartlett J. K., Skoog D. A. 1954; Colorimetric determination of elemental sulphur in hydrocarbons. Analytical Chemistry 26:1008–1011
    [Google Scholar]
  9. Beijerinck M. W. 1904; Über Bakterien welche sich im Dunkeln mit Kohlensäure als Kohlstoff-quelle ernähren konnen. Centralblatt für Bak-teriologie und Parasitenkunde (Abteilung II) 11:593–599
    [Google Scholar]
  10. Bowen T. J., Butler P. J., Happold F. C. 1965; Some properties of the rhodanese system of Thiobacillus denitrificans . Biochemical Journal 97:651–657
    [Google Scholar]
  11. Bowen T. J., Happold F. C., Taylor B. F. 1966; Studies on adenosine-5′-phosphosulphate reductase from Thiobacillus denitrificans . Biochimica et biophysicct acta 118:566–576
    [Google Scholar]
  12. Eccleston M., Kelly D. P. 1976; Growth kinetics of Thiobacillus ferrooxidans on tetra-thionate in the chemostat. Proceedings of the Society for General Microbiology 422
    [Google Scholar]
  13. Eccleston M., Kelly D. P. 1978; Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulphate. Journal of Bacteriology (in the Press)
    [Google Scholar]
  14. Hempfling W. P., Vishniac W. 1967; Yield coefficients of Thiobacillus neapolitanus in continuous culture. Journal of Bacteriology 93:874–878
    [Google Scholar]
  15. Justin P., Kelly D. P. 1976; Growth of Thiobacillus denitrificans in continuous flow culture. Proceedings of the Society for General Microbiology 425
    [Google Scholar]
  16. Justin P., Kelly D. P. 1978; Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture. Journal of General Microbiology 107:131–137
    [Google Scholar]
  17. Kelly D. P. 1978; Bioenergetics of chemolitho-trophic bacteria. Companion to Microbiology, chapter 15 (in the Press) New York: Longmans;
    [Google Scholar]
  18. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulphate and tetrathionate. Analytical Chemistry 41:898–901
    [Google Scholar]
  19. Kelly D. P., Eccleston M., Jones C. A. 1977; Evaluation of continuous chemostat cultivation of Thiobacillus ferrooxidans on ferrous iron or tetrathionate. Bacterial Leaching1–7 Schwartz W. Weinheim: Verlag Chemie;
    [Google Scholar]
  20. Kolthoff I. M., Belcher P. 1957; Volumetric Analysis. III184 New York: Interscience;
    [Google Scholar]
  21. Lieske R. 1912; Untersuchungen über die Physiologie denitrifizierender Schwelfelbakterien. Berichte der Deutschen botanischen Gesellschaft 30:12–22
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  23. Peck H. D. 1968; Energy-coupling mechanism in chemolithotrophic bacteria. Annual Review of Microbiology 22:489–518
    [Google Scholar]
  24. Pirt S. J. 1965; The maintenance energy of bacteria in growing cultures.. Proceedings of the Royal Society B163224–231
    [Google Scholar]
  25. Sargeant K., Buck P. W., Ford J. W. S., Yeo R. G. 1966; Anaerobic production of Thiobacillus denitrificans for the enzyme rhodanese. Applied Microbiology 14:998–1003
    [Google Scholar]
  26. Sawhney V., Nicholas D. J. D. 1977; Some properties of a nitrate reductase from Thiobacillus denitrificans . Proceedings of the Australian Biochemical Society10
    [Google Scholar]
  27. Schedel M., Legall J., Baldensperger J. 1975; Sulfur metabolism of Thiobacillus denitrificans Evidence for the presence of a sulphite reductase activity. Archives of Microbiology 105:339–341
    [Google Scholar]
  28. Silver M., Lundgren D. G. 1968; Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Canadian Journal of Biochemistry 46:457–461
    [Google Scholar]
  29. Stouthamer A. H. 1973; A theoretical study of the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39:545–565
    [Google Scholar]
  30. Suzuki I., Silver M. 1966; The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli. Biochimica et biophysica acta 122:22–23
    [Google Scholar]
  31. Taylor B. F. 1968; Oxidation of elemental sulphur by an enzyme system from Thiobacillus neapolitanus . Biochimica et biophysica acta 170:112–122
    [Google Scholar]
  32. Taylor B. F., Hoare D. S., Hoare S. L. 1971; Thiobacillus denitrificans as an obligate chemo-lithotroph. I. Isolation and growth studies. Archiv für Mikrobiologie 78:193–204
    [Google Scholar]
  33. Timmer-ten-Hoor A. 1976; Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus denitrificans . Antonie van Leeuwenhoek 42:483–492
    [Google Scholar]
  34. Tuovinen O. H., Kelly D. P. 1973; Studies on the growth of Thiobacillus ferrooxidans . Archiv für Mikrobiologie 88:285–298
    [Google Scholar]
  35. Vishniac W., Santer M. 1957; The thiobacilli. Bacteriological Reviews 21:195–213
    [Google Scholar]
  36. Woolley D., Jones G. L., Happold F. C. 1962; Some metabolic differences between Thiobacillus thioparus T. denitrificans and T. thiocyanoxidans . Journal of General Microbiology 29:311–316
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-107-1-123
Loading
/content/journal/micro/10.1099/00221287-107-1-123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error