1887

Abstract

Multiple transport systems for -aspartic acid exist in The intracellular accumulation of -aspartate against a concentration gradient was immediately inhibited by proton conductors, such as carbonyl cyanide -trifluoromethoxyphenyl-hydrazone, 2,4-dinitrophenol or nigericin. Transport activity was gradually lost when inhibitors of protein synthesis were added. -Aspartate transport had two pH optima at 6·5 and 4·5. At pH 6·5, two saturable transport components with different and values could be resolved by kinetic studies. A high-affinity system (system I) preferred the -isomers of the anionic forms of aspartic and glutamic acid. At the same pH, a second, low-affinity system (system II) operated, which was presumably less specific than system I and also able to accept, at high concentrations, neutral amino acids. At pH 4·5, the Lineweaver-Burk plot revealed only a single catalytic component, with and values similar to those of system II. Again, in contrast to system I, this component showed high affinity for neutral amino acids. The data suggest that -aspartic acid and -glutamic acid are transported by this system as neutral zwitterionic molecules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-103-2-307
1977-12-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/103/2/mic-103-2-307.html?itemId=/content/journal/micro/10.1099/00221287-103-2-307&mimeType=html&fmt=ahah

References

  1. Davis R., Folkes J. P., Gale E. F., Bigger L. C. 1953; The assimilation of amino-acids by micro-organisms. Biochemical Journal 54:430–437
    [Google Scholar]
  2. Eddy A. A., Indge K. J. 1962; Amino acid transport and acid-base balance in yeast. Biochemical Journal 85:35P–36P
    [Google Scholar]
  3. Frank L., Hopkins I. 1969; Sodium-stimulated transport of l-glutamate in Escherichia coli. Journal of Bacteriology 100:329–336
    [Google Scholar]
  4. Gale E. F. 1953; Assimilation of amino acids by gram-positive bacteria and some actions of antibiotics thereon. Advances in Protein Chemistry 8:285–391
    [Google Scholar]
  5. Gale E. F., Llewellyn J. M. 1972; The role of hydrogen and potassium ions in the transport of acidic amino acids in Staphylococcus aureus. Biochimica et biophysica acta 226:182–205
    [Google Scholar]
  6. Gross W., Ring K. 1969; Effect of chloramphenicol on active amino acid transport. FEBS Letters 4:319–322
    [Google Scholar]
  7. Gross W., Ring K. 1971; Active transport of glutamate in Streptomyces hydrogenans. I. Studies on uptake and pool size and their interrelationship. Biochimica et biophysica acta 233:652–665
    [Google Scholar]
  8. Gross W., Ring K., Heinz E. 1970; Positive feedback regulation of amino acid transport in Streptomyces hydrogenans. Archives of Biochemistry and Biophysics 137:253–261
    [Google Scholar]
  9. Gross W., Geck P., Burckhardt K.-L., Ring K. 1972; Kinetic analysis of two component systems in transmembrane transport (multiple forms of transport systems). Biophysik 8:271–279
    [Google Scholar]
  10. Halpern Y. S., Even-Soshan A. 1967; Properties of the glutamate transport system in Escherichia coli. Journal of Bacteriology 93:1009–1016
    [Google Scholar]
  11. Halpern Y. S., Barash H., Dover S., Druck K. 1973; Sodium and potassium requirements for active transport of glutamate by E. coli K-12. Journal of Bacteriology 114:53–58
    [Google Scholar]
  12. Hamilton W. A. 1975; Energy coupling in microbial transport. Advances in Microbial Physiology 12:1–53
    [Google Scholar]
  13. Harold F. M., Altendorf K. H. 1974; Cation transport in bacteria: K+, Na+, and H+. In Current Topics in Membranes and Transport 5 pp. 1–50 Bronner F., Kleinzeller A. Edited by New York: Academic Press.;
    [Google Scholar]
  14. Holden J. T. 1962 Amino Acid Pools Amsterdam: Elsevier.;
    [Google Scholar]
  15. Holden J. T., Utech N. M. 1967; Actinomycin D inhibition of amino acid transport in Streptococcus faecalis. Biochimica et biophysica acta 135:351–354
    [Google Scholar]
  16. Hunter D. R., Segel I. 1971; Acidic and basic amino acid transport systems of Penicillium chrysogenum. Archives of Biochemistry and Biophysics 144:168–183
    [Google Scholar]
  17. Kay W. W. 1971; Two aspartate transport systems in Escherichia coli. Journal of Biological Chemistry 246:7373–7382
    [Google Scholar]
  18. Kotyk A., Ponec M., Rihová L. 1971; Uptake of amino acids by actidione-treated yeast cells. I. Specificity of carriers. Folia Microbiologica 16:432–444
    [Google Scholar]
  19. Langheinrich W., Ring K. 1976; Regulation of amino acid transport in growing cells of Streptomyces hydrogenans. I. Modulation of transport capacity and amino acid pool composition during the growth cycle. Archives of Microbiology 109:227–235
    [Google Scholar]
  20. Macleod R., Thurmann P., Rogers H. T. 1973; Comparative transport activities of intact cells, membrane vesicles and mesosomes of Bacillus licheniformis. Journal of Bacteriology 113:329–340
    [Google Scholar]
  21. Oxender D. 1972; Amino acid transport in micro-organisms. In Metabolic Pathways 6 pp. 133–185 Hokin L. E. Edited by New York: Academic Press.;
    [Google Scholar]
  22. Reid K. G., Utech N. M., Holden J. T. 1970; Multiple transport components for dicarboxylic amino acids in Streptococcus faecalis. Journal of Biological Chemistry 245:5261–5272
    [Google Scholar]
  23. Ring K., Heinz E. 1966; Active amino acid transport in Streptomyces hydrogenans. Biochemische Zeitschrift 344:446–461
    [Google Scholar]
  24. Ring K., Gross W., Heinz E. 1970; Negative feedback regulation of amino acid transport in Streptomyces hydrogenans. Archives of Biochemistry and Biophysics 137:243–252
    [Google Scholar]
  25. Ring K., Ehle H., Foit B. 1976a; Effect of alkali ions on the active transport of neutral amino acids into Streptomyces hydrogenans. Biochimica et biophysica acta 433:615–629
    [Google Scholar]
  26. Ring K., Grimm E., Schwarz M. 1976b; Wechselwirkungen zwischen l-Aspartat und Kaliumionen beim Transport in die Zelle. Arzneimittel-Forschung 26:1195–1201
    [Google Scholar]
  27. Rudorf J. 1971; Kinetische Untersuchungen zur Spezifität des aktive Transportes neutraler Aminosäuren bei Streptomyces hydrogenans. Thesis University of Frankfurt, Federal Republic of Germany;
    [Google Scholar]
  28. Schupp T., Hutter R., Hopwood D. 1975; Genetic recombination in Nocardia mediterranei. Journal of Bacteriology 121:128–136
    [Google Scholar]
  29. Tang S. C., Howard D. H. 1973; Uptake and utilization of glutamic acid by Cryptococcus albidus. Journal of Bacteriology 115:98–106
    [Google Scholar]
  30. Tempest D. W., Meers J. L., Brown C. M. 1970; Influence of environment on the content and composition of microbial free amino acid pools. Journal of General Microbiology 64:171–185
    [Google Scholar]
  31. Wiley W. R., Matchett W. H. 1968; Tryptophan transport in Neurospora crassa. Journal of Bacteriology 95:959–966
    [Google Scholar]
  32. Wolfinbarger L., Jervis H. H., Debusk G. 1971; Active transport of l-aspartic acid in Neurospora crassa. Biochimica et biophysica acta 249:63–68
    [Google Scholar]
  33. Yabu K. 1971; Aspartic acid transport in Mycobacterium phlei. Japanese Journal of Microbiology 15:449–456
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-103-2-307
Loading
/content/journal/micro/10.1099/00221287-103-2-307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error