1887

Abstract

subspecies was grown in batch cultures in which the dissolved oxygen tension (d.o.t.) was maintained at various constant levels. At a range of d.o.t. from 0.002 to 0·05 atm, which allowed good growth (mean generation time approximately 1·5 h), -lactate was preferentially consumed before -lactate. -Lactate oxidation was accompanied by equimolar acetate production during exponential growth. A value for (g dry weight bacteria per mol -lactate) of 54 was determined. Net acetate production stopped when started to use -lactate after consumption of -lactate. When a culture growing exponentially at the expense of -lactate was shifted from a d.o.t. of 0·02 atm to a d.o.t. of 0·15 atm, growth was impaired, and -lactate consumption and corresponding acetate production diminished. This decrease correlated with a loss of lactate dehydrogenase activity after the shift. appeared to possess cytochromes of the and -type and a carbon monoxide-binding pigment. Evidence is given that the principal site of oxygen damage is lactate dehydrogenase rather than the cytochrome chain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-103-2-215
1977-12-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/103/2/mic-103-2-215.html?itemId=/content/journal/micro/10.1099/00221287-103-2-215&mimeType=html&fmt=ahah

References

  1. Bergmeyer H. U. 1975; Neue Werte für die molaren Extinktions-Koeffizienten von NADH und NADPH zum Gebrauch im Routine-Laboratorium. Zeitschrift für Klinische Chemie und Klinische Biochemie 13:507–508
    [Google Scholar]
  2. Bowdre J. H., Krieg N. R., Hoffman P. S., Smibert R. M. 1976; Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subspecies jejuni. Applied and Environmental Microbiology 31:127–133
    [Google Scholar]
  3. Clark-Walker G. D., Rittenberg B., Lascelles J. 1967; Cytochrome synthesis and its regulation in Spirillum itersonii. Journal of Bacteriology 94:1648–1655
    [Google Scholar]
  4. Cole J. A. 1973; Abnormally low activities of fumarate hydratase and malate dehydrogenase in oxygen-sensitive cultures of Spirillum volutans. Journal of General Microbiology 78:371–374
    [Google Scholar]
  5. Cole J. A., Rittenberg S..C. 1971; A comparison of respiratory processes in Spirillum volutans, Spirillum itersonii, and Spirillum serpens. Journal of General Microbiology 69:375–383
    [Google Scholar]
  6. Gahwehn K., Bergmeyer H. U. 1970 In Methoden der Enzymatischen Analyse 2 pp. 1450–1453 Bergmeyer H. U. Edited by Weinheim, Germany: Verlag Chemie.;
    [Google Scholar]
  7. Van Gent-Ruijters M. L. W., De Meyere F. A., De Vries W., Stouthamer A. H. 1976; Lactate metabolism in Propionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor. Antonie van Leeuwenhoek 42:217–228
    [Google Scholar]
  8. Van Gent-Ruijters M. L. W., De Vries W. Jr 1975; Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum. Journal of General Microbiology 88:36–48
    [Google Scholar]
  9. Hohorst H.-J. 1970 In Methoden der Enzymatischen Analyse 2 pp. 1425–1429 Bergmeyer H. U. Edited by Weinheim, Germany: Verlag Chemie.;
    [Google Scholar]
  10. Holdeman L. V., Moore W. E. C. 1972 Anaerobe Laboratory Manual Blacksburg, Virginia, U.S.A.: Virginia Polytechnic Institute and State University.;
    [Google Scholar]
  11. Kröger A., Innerhofer A. 1976; The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. European Journal of Biochemistry 69:497–506
    [Google Scholar]
  12. Lang E., Lang H. 1972; Spezifische Farbreaktion zum direkten Nachweis der Ameisensaure. Zeitschrift für Analytische Chemie 260:8–10
    [Google Scholar]
  13. Lipmann F., Tuttle L. C. 1945; A specific micromethod for the determination of acyl- phosphates. Journal of Biological Chemistry 159:21–28
    [Google Scholar]
  14. Loesche W. J., Gibbons R. J., Socransky S. S. 1965; Biochemical characteristics of Vibrio sputorum and relationship to Vibrio bubulus and Vibrio fetus. Journal of Bacteriology 89:1109–1116
    [Google Scholar]
  15. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  16. Niekus H. G. D., De Vries W., Stouthamer A. H. 1977; Growth of Campylobacter sputorum subspecies bubulus in batch cultures at different dissolved oxygen tensions. Proceedings of the Society for General Microbiology 476
    [Google Scholar]
  17. Van Palenstein Helderman W. H., Rosman I. 1976; Hydrogen-dependent organisms from the human gingival crevice resembling Vibrio succinogenes. Antonie van Leeuwenhoek 42:107–118
    [Google Scholar]
  18. Rose I. A., Grunberg-Manago M., Korey S. R., Ochoa S. 1954; Enzymatic phosphorylation of acetate. Journal of Biological Chemistry 211:737–756
    [Google Scholar]
  19. Sebald M., Véron M. 1963; Teneur en bases de l’ADN et classification des vibrions. Annales de l’Institut Pasteur 105:897–910
    [Google Scholar]
  20. Sinclair P. R., White D. C. 1970; Effect of nitrate, fumarate, and oxygen on the formation of the membrane-bound electron transport system of Haemophilus parainfluenzae. Journal of Bacteriology 101:365–372
    [Google Scholar]
  21. Syed S. A., Loesche W. J. 1971; Similarity of microaerophilic vibrios and Vibrio succinogenes. Bacteriological Proceedings 54:
    [Google Scholar]
  22. De Vries W., Stouthamer A. H. 1968; Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. Journal of Bacteriology 96:472–478
    [Google Scholar]
  23. De VRIES W., Van Wijck-Kapteyn W. M. C., Stouthamer A. H. 1972; Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria. Journal of General Microbiology 71:515–524
    [Google Scholar]
  24. Weston J. A., Knowles C. J. 1973; A soluble CO-binding c-type cytochrome from the marine bacterium Beneckea natriegens. Biochimica et biophysica acta 305:11–18
    [Google Scholar]
/content/journal/micro/10.1099/00221287-103-2-215
Loading
/content/journal/micro/10.1099/00221287-103-2-215
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error