1887

Abstract

Nitrogen fixation (Nif)-derepressed mutants of consumed, under optimum conditions, 7·5 to 8.5 mol glucose per mol N fixed. The nitrogenase system of these mutants catalysed the production of about 1·3 mol H per mol N reduced. Almost one-third of the energy as ATP and reductant used by nitrogenase may be lost in H production, since an ATP/2e ratio of approximately 4 was obtained. Nitrogenase-catalysed H production was not substantially suppressed by increasing the partial pressure of N from 0·2 atm (20 kPa) to 1 atm (101 kPa). In the absence of N, H production catalysed by nitrogenase increased about threefold. It is concluded that nitrogenase-catalysed H production is of major importance in the overall efficiency of biological N fixation

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-103-1-107
1977-11-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/103/1/mic-103-1-107.html?itemId=/content/journal/micro/10.1099/00221287-103-1-107&mimeType=html&fmt=ahah

References

  1. Azoulay E., Marty B. 1970; Étude du systéme multi-enzymatique hydrogéne lyase chez Escherichia coli K12 et ses mutants chlorate-resistants. European Journal of Biochemistry 13:168–173
    [Google Scholar]
  2. Ballentine R. 1957; Determination of total nitrogen and ammonia. Methods in Enzymology 3:984–995
    [Google Scholar]
  3. Bothe H., Tennigkeit J., Eisbrenner G., Yates M. G. 1977; The hydrogenase-nitrogenase relationship in the blue-green alga Anabaena cylindrica. . Planta 133:237–242
    [Google Scholar]
  4. Burns R. C. 1969; The nitrogenase system from Azotobacter. Activation energy and divalent cation requirement. Biochimica et biophysica acta 171:253–259
    [Google Scholar]
  5. Burns R. C., Hardy R. W. F. 1972; Purification of nitrogenase and crystallization of its Mo-Fe protein. Methods in Enzymology 24:480–497
    [Google Scholar]
  6. Burns R. C., Hardy R. W. F. 1975 Nitrogen Fixation in Bacteria and Higher Plants. New York: Springer Verlag;
    [Google Scholar]
  7. Daesch G., Mortenson L. E. 1968; Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. Journal of Bacteriology 96:346–35I
    [Google Scholar]
  8. Dalton H., Postgate J. R. 1969; Growth and physiology of Azotobacter chroococcum in continuous culture. Journal of General Microbiology 56:307–319
    [Google Scholar]
  9. Dixon R. O. D. 1972; Hydrogenase in legume root nodule bacteroids: occurrence and properties. Archiv für Mikrobiologie 85:193–201
    [Google Scholar]
  10. Drews G. 1965; Untersuchungen zur Regulation der Bacteriochlorophyll-Synthese bei Rhodospirillum rubrum. . Archiv für Mikrobiologie 51:186–198
    [Google Scholar]
  11. Gordon J. K., Brill W. J. 1974; Derepression of nitrogenase synthesis in the presence of excess NH4 +. Biochemical and Biophysical Research Communications 59:967–971
    [Google Scholar]
  12. Hadfield K. L., Bulen W. A. 1969; Adenosine triphosphate requirement of nitrogenase from Azotobacter vinelandii. . Biochemistry 8:5103–5108
    [Google Scholar]
  13. Hadjipetrou L. P., Gerrits J. P., Teulings F. A. G., Stouthamer A. H. 1964; Relation between energy production and growth of Aerobacter aerogenes. . Journal of General Microbiology 36:139–150
    [Google Scholar]
  14. Hamilton I. R., Burris R. H., Wilson P. W. 1964; Hydrogenase and nitrogenase in a nitrogen-fixing bacterium. Proceedings of the National Academy of Sciences of the United States of America 52637–641
    [Google Scholar]
  15. Hardy R. W. F., Havelka U. D. 1975; Nitrogen fixation research: a key to world food?. Science 188:633–643
    [Google Scholar]
  16. Hardy R. W. F., Holsten R. D., Jackson E. K., Burns R. C. 1968; The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology 43:1185–1207
    [Google Scholar]
  17. Hill S. 1976; The apparent ATP requirement for nitrogen fixation in growing Klebsiella pneumoniae. . Journal of General Microbiology 95:297–312
    [Google Scholar]
  18. Holz G., Bergmeyer H. U. 1974; Acetate determination with acetate kinase and hydroxylamine. Methods of Enzymatic Analysis 3:1528–1532
    [Google Scholar]
  19. Hwang J. C., Burris R. H. 1973; Nitrogenase catalysed reactions. Biochimica et biophysica acta 283:339–350
    [Google Scholar]
  20. Hwang J. C., Chen C. H., Burris R. H. 1973; Inhibition of nitrogenase-catalysed reductions. Biochimica et biophysica acta 292:256–270
    [Google Scholar]
  21. Hyndman L. A., Burris R. H., Wilson P. W. 1953; Properties of hydrogenase from Azotobacter vinelandii. . Journal of Bacteriology 65:522–531
    [Google Scholar]
  22. Jeng D. Y., Morris J. A., Mortenson L. E. 1970; The effect of reductant on inorganic phosphate release from adenosine 5′-triphosphate by purified nitrogenase of Clostridium pasteurianum. . Journal of Biological Chemistry 245:2809–2813
    [Google Scholar]
  23. Ljones T., Burris R. H. 1972; ATP hydrolysis and electron transfer in the nitrogenase reaction with different combinations of the iron protein and the molybdenum-iron protein. Biochimica et biophysica acta 275:93–101
    [Google Scholar]
  24. Ludden P. W., Burris R. H. 1976; Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum. . Science 194:424–426
    [Google Scholar]
  25. Orme-Johnson W. H., Davis L. C. 1977; Current topics and problems in the enzymology of nitrogenase. In Iron-Sulfur Proteins 3 pp. 15–60 Edited by Lovenberg W. New York: Academic Press;
    [Google Scholar]
  26. Parejko R. A., Wilson P. W. 1971; Kinetic studies on Klebsiella pneumoniae nitrogenase. Proceedings of the National Academy of Sciences of the United States of America 682016–2018
    [Google Scholar]
  27. Pichinoty F. 1969; Recherche des activites formiate-oxydase, hydrogene-lyase, hydrogenase et formiate-deshydrogenase chez quelques Entero-bacteriaceae. . Annales de l’lnstitut Pasteur 117:3–15
    [Google Scholar]
  28. Postgate J. R. 1969; Viable counts and viability. Methods in Microbiology 1:611–628
    [Google Scholar]
  29. Schubert K. R., Evans H. J. 1976; Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proceedings of the National Academy of Sciences of the United States of America 731207–1211
    [Google Scholar]
  30. Shanmugam K. T., Morandi C. 1976; Amino acids as repressors of nitrogenase biosynthesis in Klebsiella pneumoniae. . Biochimica et biophysica acta 437:322–332
    [Google Scholar]
  31. Shanmugam K. T., Valentine R. C. 1975; Microbial production of ammonium ion from nitrogen. Proceedings of the National Academy of Sciences of the United States of America 72136–139
    [Google Scholar]
  32. Shanmugam K. T., Loo A. S., Valentine R. C. 1974; Deletion mutants of nitrogen fixation in Klebsiella pneumoniae: mapping of a cluster of nif genes essential for nitrogenase activity. Biochimica et biophysica acta 338:545–553
    [Google Scholar]
  33. Shanmugam K. T., Chan I., Morandi C. 1975; Regulation of nitrogen fixation. Nitro-genase-derepressed mutants of Klebsiella pneumoniae. . Biochimica et biophysica acta408–101111
    [Google Scholar]
  34. Shanmugam K. T., Morandi C., Andersen K., Valentine R. C. 1977a; Genetic engineering with nitrogen fixation. In Proceedings of the III International Conference on Enzyme Engineering in the Press Edited by Pye K.
    [Google Scholar]
  35. Shanmugam K. T., Morandi C., Valentine R. C. 1977b; Nitrogenase derepressed mutants of Klebsiella pneumoniae. . In Iron-Sulfur Proteins 3 pp. 1–14 Edited by Lovenberg W. New York: Academic Press;
    [Google Scholar]
  36. Silverstein R., Bulen W. A. 1970; Kinetic studies of the nitrogenase-catalysed hydrogen evolution and nitrogen reduction reaction. Bio-chemistry 9:3809–3815
    [Google Scholar]
  37. Smith L. A., Hill S., Yates M. G. 1976; Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature London: 262:209–210
    [Google Scholar]
  38. Spies J. R. 1957; Colorimetric procedures for amino acids. Methods in Enzymology 3:467–477
    [Google Scholar]
  39. Stewart W. D. P., Rowell P. 1975; Effect of l-methionine-dl-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica. . Biochemical and Biophysical Research Communications 65:846–856
    [Google Scholar]
  40. Stouthamer A. H. 1967; Nitrate reduction in Aerobacter aerogenes. II. Characterization of mutants blocked in the reductions of nitrate and chlorate. Archiv für Mikrobiologie 56:76–80
    [Google Scholar]
  41. Stouthamer A. H., Bettenhaussen C. 1973; Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochimica et biophysica acta 301:53–70
    [Google Scholar]
  42. Stouthamer A. H., Bettenhaussen C., van Hartingsveld J., Van’t Riet J., Planta R. J. 1967; Nitrate reductions in Aerobacter aerogenes. III. Nitrate reduction, chlorate resistance and formate metabolism in mutant strains. Archiv für Mikrobiologie 58:228–247
    [Google Scholar]
  43. Streicher S., Gurney E., Valentine R. C. 1971; Transduction of the nitrogen-fixing genes in Klebsiella pneumoniae. . Proceedings of the National Academy of Sciences of the United States of America 681174–1177
    [Google Scholar]
  44. Umbreit W. W., Burris R. H., Stauffer J. F. 1964 Manometric and Biochemical Techniques Minneapolis: Burgess Publishing Company;
    [Google Scholar]
  45. Wall J. D., Weaver P. F., Gest H. 1975; Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata. . Nature London: 258:630–631
    [Google Scholar]
  46. Watt G. D., Bulen W. A., Burns A., Had-Field K. L. 1975; Stoichiometry, ATP/2e values, and energy requirements for reactions catalysed by nitrogenase from Azotobacter vinelandii. . Biochemistry 14:4266–4272
    [Google Scholar]
  47. Weare N. M., Shanmugam K. T. 1976; Photo-production of ammonium ion from N2 in Rhodospirillum rubrum. . Archives of Microbiology 110:207–213
    [Google Scholar]
  48. Winter H. C., Burris R. H. 1976; Nitrogenase. Annual Review of Biochemistry 45:409–426
    [Google Scholar]
  49. Zumft W. G., Mortenson L. E. 1975; The nitrogen-fixing complex of bacteria. Biochimica et biophysica acta 416:1–52
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-103-1-107
Loading
/content/journal/micro/10.1099/00221287-103-1-107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error