Bacteriophage-resistant Mutants of 12 with Altered Lipopolysaccharide. Studies with Concanavalin A Free

Abstract

Three classes of mutants of , isolated by selection for resistance to lipopolysaccharide-specific bacteriophages, were agglutinated by Concanavalin A which is presumed to interact with the lipopolysaccharide component of the outer membrane. Wheat germ and soy bean agglutinins did not agglutinate the parent or mutant strains. The adsorption of certain bacteriophages was also inhibited by Concanavalin A. The pattern of inhibition of adsorption of bacteriophages suggests that non-specific masking of receptors may occur, as well as specific masking of terminal glucose residues. Although bacteria were agglutinated by Concanavalin A, the permeability of the outer membrane seemed unaffected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-102-2-319
1977-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/102/2/mic-102-2-319.html?itemId=/content/journal/micro/10.1099/00221287-102-2-319&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages. New York & London:: Wiley-Interscience.;
    [Google Scholar]
  2. Archibald A. R., Coapes H. E. 1972; Blocking of bacteriophage receptor sites by Concanavalin A. Journal of General Microbiology 73:581–585
    [Google Scholar]
  3. Bayer M. E. 1975; Role of adhesion zones in bacterial cell surface function and biogenesis. In Membrane Biogenesis pp. 393–427 Tzagloff A. Edited by New York:: Plenum Publishing Corporation.;
    [Google Scholar]
  4. Beacham I. R., Silbert D. F. 1973; Studies on the uridinediphosphate-galactose: lipopolysac- charidegalactosyltransferase reaction using a fatty acid mutant of Escherichia coli. Journal of Biological Chemistry 248:5310–5318
    [Google Scholar]
  5. Benedetto J. P., Bruneteau M., Michel G. 1976; Étude du lipopolysaccharide de Escherichia coli k12 CR34. European Journal of Biochemistry 63:313–320
    [Google Scholar]
  6. Biddle F., Cronin A. P., Sanders F. K. 1970; The interaction between wheat germ agglutinin and receptors on normal and transformed cells and on erythrocytes. Cytobios 2:9–17
    [Google Scholar]
  7. Birdsell D. C., Doyle R. J. 1973; Modification of bacteriophage 25 adsorption to Bacillus subtilis by Concanavalin A. Journal of Bacteriology 113:198–202
    [Google Scholar]
  8. Boman H. G., Monner D. A. 1975; Characterization of lipopolysaccharides from Escherichia coli k12 mutants. Journal of Bacteriology 121:455–465
    [Google Scholar]
  9. Boman H. G., NordstrÖm K., Normark S. 1974; Penicillin resistance in Escherichia coli K 12: synergism between penicillinases and a barrier in the outer part of the envelope. Annals of the New York Academy of Sciences 235:569–586
    [Google Scholar]
  10. Dawes J. 1975; Characterization of the bacteriophage T4 receptor site. Nature; London: 256127–128
    [Google Scholar]
  11. Doyle R. J., Birdsell D. C. 1972; Interaction of Concanavalin A with the cell wall of Bacillus subtilis. Journal of Bacteriology 109:652–658
    [Google Scholar]
  12. Doyle R. J., Birdsell D. C., Young F. E. 1973; Isolation of the teichoic acid of Bacillus subtilis168 by affinity chromatography. Preparative Biochemistry 3:13–18
    [Google Scholar]
  13. Goldstein I. J., Iyer R. N. 1966; Interaction of Concanavalin A, a phytohaemagglutinin, with model substrates. Biochimica et biophysica acta 121:197–200
    [Google Scholar]
  14. Goldstein I. J., Staub A. M. 1970; Interaction of Concanavalin A with polysaccharides of Salmonella. Immunochemistry 7:315–319
    [Google Scholar]
  15. Goldstein I. J., Hollerman C. E., Merrick J. M. 1965; Protein-carbohydrate interaction. I. The interaction of polysaccharides with Concanavalin A. Biochimica et biophysica acta 97:68–76
    [Google Scholar]
  16. Goldstein I. J., Hollerman C. E., Smith E. E. 1965; Protein-carbonhydrate interaction. II. Inhibition studies on the interaction of Concanavalin A with polysaccharides. Biochemistry 4:876–883
    [Google Scholar]
  17. Gustafsson P., NordstrÖm K., Normark S. 1973; Outer penetration barrier of Escherichia coli k12: kinetics of the uptake of gentian violet by wild type and envelope mutants. Journal of Bacteriology 116:893–900
    [Google Scholar]
  18. Hattman S., Fukasawa J. 1963; Host induced modification of T-even phages due to defective glucosylation of their DNA. Proceedings of the National Academy of Sciences of the United States of America 50:297–299
    [Google Scholar]
  19. Horwitz A. F., Hatten M. E., Burger M. M. 1974; Membrane fatty acid replacements and their effect on growth and lectin induced agglutinability. Proceedings of the National Academy of Sciences of the United States of America 71:3115–3119
    [Google Scholar]
  20. Kulpa C. F., Leive L. 1976; Mode of insertion of lipopolysaccharide into the outer membrane of Escherichia coli. Journal of Bacteriology 126:467–477
    [Google Scholar]
  21. Leive L. 1974; The barrier function of the gram negative envelope. Annals of the New York Academy of Siciences 235:109–127
    [Google Scholar]
  22. Lindberg A. A. 1973; Bacteriophage receptors. Annual Review of Microbiology 27:205–241
    [Google Scholar]
  23. Lis H., Sharon N. 1973; The biochemistry of plant lectins (phytohaemagglutinins). Annual Review of Biochemistry 42:541–574
    [Google Scholar]
  24. Lis H., Sela B. A., Sachs L., Sharon N. 1970; Specific inhibition by N-acetyl-d-galactosamine of the interaction between soy bean agglutinin and animal cell surfaces. Biochimica et biophysica acta 211:582–585
    [Google Scholar]
  25. Manning P., Reeves P. 1976; Outer membrane of Escherichia coli k12: tsx mutants (resistant to bacteriophage T6 and colicin K) lack an outer membrane protein. Biochemical and Biophysical Research Communications 71:466–471
    [Google Scholar]
  26. Mayer H. 1972; Reaktivität und Differenzierung der kompletten enterobakteriellen R-basal Typenmit Concanavalin A. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheit und Hygiene (Abteilung I, Originate) 220:477–483
    [Google Scholar]
  27. Mayer H., Schlecht S., Gromska W. 1975; Reactivity of lipopolysaccharides from various Salmonella SR and R (chemotypes Ra-Re) mutants with Concanavalin A. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheit und Hygiene (Abteilung I, Originale) 233:327–334
    [Google Scholar]
  28. Michael J. G. 1968; The surface antigens and phage receptors in Escherichia coli b. Proceedings of the Society for Experimental Biology and Medicine 128:434–438
    [Google Scholar]
  29. Mühlradt P. F., Menzel J., Golecki J. R., Speth V. 1974; Lateral mobility and surface density of lipopolysaccharide in the outer membrane of Salmonella typhimurium. European Journal of Biochemistry 43:533–539
    [Google Scholar]
  30. Nicolson G. L. 1972a; Topological studies on the structure of cell membranes. In Membrane Research Proceedings of the 1972 California Membrane Conference pp. 53–70 Fox C. F. Edited by New York:: Academic Press.;
    [Google Scholar]
  31. Nicolson G. L. 1972b; Topography of membrane Concanavalin A sites modified by proteolysis. Nature New Biology 239:193–197
    [Google Scholar]
  32. Nikaido H. 1976; Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances. Biochimica et biophysica acta 433:118–132
    [Google Scholar]
  33. Overath P., Schairer H-U., Hill F. F., Lamnek-Hirsch I. 1971; Structure and function of hydrocarbon chains in bacterial phospholipids. In The Dynamic Structure of Cell Membranes. pp. 149–164 Wallach D. F. H., Fischer H. Edited by Berlin:: Springer-Verlag.;
    [Google Scholar]
  34. Picken R. N., Beacham I. R. 1975; The interaction of Concanavalin A with mutant and wild- type strains of Escherichia coli k12. Transactions of the Biochemical Society 3:387–388
    [Google Scholar]
  35. Picken R. N., Beacham I. R. 1977; Bacteriophage-resistant mutants of Escherichia coli k12.Location of receptors within the lipopolysaccharide. Journal of General Microbiology 102:305–318
    [Google Scholar]
  36. Prehm P., Jann B., Jann K., Schmidt G., Stirm S. 1976a; On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia colib. Journal of Molecular Biology 101:277–281
    [Google Scholar]
  37. Prehm P., Stirm S., Jann B., Jann K., Boman H. G. 1976b; Cell wall lipopolysaccharides of ampiciliin-resistant mutants of Escherichia coli k12. European Journal of Biochemistry 66:369–377
    [Google Scholar]
  38. Schlesinger M. J. 1967; Formation of a defective alkaline phosphatase subunit by a mutant of Escherichia coli. Journal of Biological Chemistry 242:1604–1611
    [Google Scholar]
  39. Sharon N., Lis H. 1972; Lectins: cell-agglutinating and sugar-specific proteins. Science 177:949–959
    [Google Scholar]
  40. Simon L. D., Anderson T. F. 1967; The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration. Virology 32:279–297
    [Google Scholar]
  41. Verkleij A. J., Lugtenberg E. J. J., Verver-Gaert Th P. H. J. 1976; Freeze etch morphology of outer membrane mutants of Escherichia coli k12. Biochimica et biophysica acta 426:581–586
    [Google Scholar]
  42. Voll M. J., Leive L. 1970; Release of lipopolysaccharide in Escherichia coli resistant to the permeability increase induced by ethylenedi-aminetetraacetate. Journal of Biological Chemistry 245:1108–1114
    [Google Scholar]
  43. Watanabe T. 1976; Role of lipopolysaccharide in adsorption of coliphage T4D to Escherichia coli B. Canadian Journal of Microbiology 22:745–751
    [Google Scholar]
  44. Wilkinson R. G., Stocker B. A. D. 1968; Genetics and cultural properties of mutants of Salmonella typhimurium lacking glucosyl or galactosyl lipopolysaccharide transferase. Nature; London: 217955–957
    [Google Scholar]
  45. Wilson J. H., Luftig R. B., Wood W. B. 1970; Interaction of bacteriophage T4 tail fibre component with a lipopolysaccharide fraction from Escherichia coli. Journal of Molecular Biology 51:423–434
    [Google Scholar]
  46. Wu M. C., Heath E. C. 1973; Isolation and characterization of lipopolysaccharide protein from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 70:2572–2576
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-102-2-319
Loading
/content/journal/micro/10.1099/00221287-102-2-319
Loading

Data & Media loading...

Most cited Most Cited RSS feed