1887

Abstract

During the adaptation of from growth on succinate to growth on trimethylamine, the following enzymes were synthesized in the lag phase before exponential growth on trimethylamine began: trimethylamine and dimethylamine mono-oxygenases, trimethylamine--oxide aldolase (demethylase), glutathione- and NAD-dependent formaldehyde dehydrogenase, dye-linked formaldehyde dehydrogenase, hydroxypyruvate reductase and -methylglutamate dehydrogenase. Differential plots suggested that the rate of enzyme synthesis in the lag phase exceeded the rate of synthesis during exponential growth. The evidence suggests that the enzymes discussed are essential for growth on trimethylamine, while the NADPH-dependent -methylalanine dehydrogenase is not involved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-101-1-151
1977-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/101/1/mic-101-1-151.html?itemId=/content/journal/micro/10.1099/00221287-101-1-151&mimeType=html&fmt=ahah

References

  1. Anthony C. 1975; The biochemistry of methylotrophic micro-organisms. Science Progress, Oxford 62:167–206
    [Google Scholar]
  2. Bamforth C. W., Large P. J. 1977; Solubilization, partial purification and properties of N- methylglutamate dehydrogenase from Pseudomonas aminovorans . Biochemical Journal 161:357–370
    [Google Scholar]
  3. Boulton C. A., Crabbe M. J. C., Large P. J. 1974; Microbial oxidation of amines. Partial purification of a trimethylamine mono-oxygenase from Pseudomonas aminovorans and its role in growth on trimethylamine. Biochemical Journal 140:253–263
    [Google Scholar]
  4. Colby J., Zatman L. J. 1973; Trimethylamine metabolism in obligate and facultative methylo- trophs. Biochemical Journal 132:101–112
    [Google Scholar]
  5. Colby J., Zatman L. J. 1974; Purification and properties of trimethylamine dehydrogenase of bacterium 4B6. Biochemical Journal 143:555–567
    [Google Scholar]
  6. Van Dijken J. P., Oostra-Demkes G. J., Otto R., Harder W. 1976; S-Formylglutathione: the substrate for formate dehydrogenase in methanolutilizing yeasts. Archives of Microbiology 111:77–83
    [Google Scholar]
  7. Eady R. R. 1970 The bacterial oxidation of mono- and dimethylamines Ph.D. thesis University of Hull;
    [Google Scholar]
  8. Eady R. R., Large P. J. 1971; Microbial oxidation of amines. Spectral and kinetic properties of the primary amine dehydrogenase of Pseudomonas AMI. Biochemical Journal 123:757–771
    [Google Scholar]
  9. Eady R. R., Jarman T. R., Large P. J. 1971; Microbial oxidation of amines. Partial purification of a mixed function secondary-amine oxidase system from Pseudomonas aminovorans that contains an enzymically active cytochrome-P- 420-type haemoprotein. Biochemical Journal 125:449–459
    [Google Scholar]
  10. Hersh L. B., Peterson J. A., Thompson A. A. 1971; An N-methylglutamate dehydrogenase from Pseudomonas ma . Archives of Biochemistry and Biophysics 145:115–120
    [Google Scholar]
  11. Jarman T. R., Large P. J. 1972; Distribution of the enzymes oxidizing secondary and tertiary amines in Pseudomonas aminovorans grown on various substrates. Journal of General Microbiology 73:205–208
    [Google Scholar]
  12. Johnson P. A., Quayle J. R. 1964; Microbial growth on C1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol-grown Pseudomonas AMI. Biochemical Journal 93:281–290
    [Google Scholar]
  13. Large P. J. 1971; Non-oxidative demethylation of trimethylamine N-oxide by Pseudomonas aminovorans. . FEBS Letters 18:297–300
    [Google Scholar]
  14. Large P. J., Carter R. H. 1973; Specific activities of enzymes of the serine pathway of carbon assimilation in Pseudomonas aminovorans and Pseudomonas ms grown on methylamine. Biochemical Society Transactions 1:1291–1293
    [Google Scholar]
  15. Large P. J., Mcdougall H. 1975; An enzymic method for the microestimation of trimethylamine. Analytical Biochemistry 64:304–310
    [Google Scholar]
  16. Lin M.C.-M., Wagner C. 1975; Purification and characterization of A-methylalanine dehydrogenase . Journal of Biological Chemistry 250:3746–3751
    [Google Scholar]
  17. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  18. Meiberg J. B. M., Harder W. 1976; Aerobic and anaerobic degradation of trimethylamine and dimethylamine by Hyphomicrobium x. Proceedings of the Society for General Microbiology 445
    [Google Scholar]
  19. Monod J. 1949; The growth of bacterial cultures. Annual Review of Microbiology 3:371–394
    [Google Scholar]
  20. Monod J., Pappenheimer A. M. Jr Cohen-Bazir G. 1952; La cinétique de la biosynthese de la β-galactosidase chez E. coli considérée comme fonction de la croissance. Biochimica et biophysica acta 9:648–660
    [Google Scholar]
  21. Pollock R. J., Hersh L. B. 1971; N-Methyl- glutamate synthetase. Purification and properties of the enzyme. Journal of Biological Chemistry 246:4737–4743
    [Google Scholar]
  22. Quayle J. R. 1972; The metabolism of one-carbon compounds by micro-organisms. Advances in Microbial Physiology 7:119–203
    [Google Scholar]
  23. Rodgers K. 1961; Estimation of succinic acid in biological materials. Biochemical Journal 80:240–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-101-1-151
Loading
/content/journal/micro/10.1099/00221287-101-1-151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error