1887

Abstract

SUMMARY: A membrane-bound nitrate reductase from can utilize either sulphite or NADH as an electron donor. The sulphite-dependent nitrate reductase activity was released from the membrane by treatment with sodium deoxycholate. Cytochrome and FAD were separated from the solubilized enzyme by heat treatment and subsequent chromatography on DEAE-cellulose. The bacterial cytochrome and a preparation of horse-heart cytochrome served as electron mediators to the solubilized sulphite-dependent nitrate reductase activity with apparent values of 1·5 and 1·3 respectively. The NADH-linked enzymic activity, which was unstable during storage, was re-activated with reduced glutathione. It was also inactivated after treatment with deoxycholate but this effect was reversed by menadione. A possible scheme for electron transport for the sulphite- and NADH-dependent enzyme is proposed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-100-1-49
1977-05-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/100/1/mic-100-1-49.html?itemId=/content/journal/micro/10.1099/00221287-100-1-49&mimeType=html&fmt=ahah

References

  1. Adams C. A., Warnes G. M., Nicholas D. J. D. 1971; A sulphite-dependent nitrate reductase from Thiobacillus denitrificans. Biochimica et biophysica acta 235:398–406
    [Google Scholar]
  2. Aminuddin M., Nicholas D. J. D. 1973; Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Biochimica et biophysica acta 325:81–93
    [Google Scholar]
  3. Aminuddin M., Nicholas D. J. D. 1974a; Electron transfer during sulphide and sulphite oxidation in Thiobacillus dentrificans. Journal of General Microbiology 82:115–123
    [Google Scholar]
  4. Aminuddin M., Nicholas D. J. D. 1974b; An AMP-dependent sulphite oxidase from Thiobacillus denitrificans: purification and properties. Journal of General Microbiology 82:103–113
    [Google Scholar]
  5. Andrews P. 1964; Estimation of molecular weights of proteins by Sephadex gel-filtration. Biochemical Journal 91:222–233
    [Google Scholar]
  6. Aubert J. P., Milhaud G., Moncel C., Millet J. 1958; Existence, isolement et propriétés physico-chimiques d’un cytochrome c de Thiobacillus denitrificans. Comptes rendus hebdomadaires des séances de l’Academie des sciences 246:1616–1619
    [Google Scholar]
  7. Baalsrud K., Baalsrud K. S. 1954; Studies on Thiobacillus denitrificans. Archiv für Mikrobiologie 20:S34–62
    [Google Scholar]
  8. Beijerinck M. W. 1904; Phénomenès de réduction produits par les microbes. Archiv für Neerland Science, Exactes et Naturelles, Série 29:131
    [Google Scholar]
  9. Davenport H. E., Hill R. 1952; The preparation and some properties of cytochrome f. Proceedings of Royal Society B139:327–345
    [Google Scholar]
  10. Delwiche C. C. 1956; Denitrification. In Symposium on Inorganic Nitrogen Metabolism pp. 233–256 McElroy W. D., Glass B. H. Edited by Baltimore: Johns Hopkins Press;
    [Google Scholar]
  11. Fewson C. A., Nicholas D. J. D. 1961; Nitrate reductase from Pseudomonas aeruginosa. Biochimica et biophysica acta 49:
    [Google Scholar]
  12. Hewitt E. J., Nicholas D. J. D. 1964; Enzymes of inorganic nitrogen metabolism. In Modern Methods of Plant Analysis 7: pp. 67–172 Linskens Y. F., Sanwal B. D., Tracey M. V. Edited by Berlin: Springer Verlag;
    [Google Scholar]
  13. Iida K., Taniguchi S. 1959; Studies on nitrate reductase system of Escherichia coli. I. Particulate electron transport system to nitrate and its solubilization. Journal of Biochemistry 46:1041–1055
    [Google Scholar]
  14. Itzhaki R. F., Gill D. M. 1964; A micro-biuret method for estimating proteins. Analytical Biochemistry 9:401–410
    [Google Scholar]
  15. Kiszkiss D. F., Downey R. J. 1972a; Localization and solubilization of the respiratory nitrate reductase of Bacillus stearothermophilus. Journal of Bacteriology 109:803–810
    [Google Scholar]
  16. Kiszkiss D. F., Downey R. J. 1972b; Physical aggregation and functional reconstitution of solubilized membranes of Bacillus stearothermophilus. Journal of Bacteriology 109:811–819
    [Google Scholar]
  17. Lam Y., Nicholas D. J. D. 1969; A nitrate reductase from Micrococcus denitrificans. Biochimica et biophysica acta 178:225–234
    [Google Scholar]
  18. Lyric R. M., Suzuki I. 1970; Enzymes involved in metabolism of thiosulphate by Thiobacillus thioparus. I. Survey of enzymes and properties of sulphite: cytochrome c oxidoreductase. Canadian Journal of Biochemistry 48:334–343
    [Google Scholar]
  19. Milhaud G., Aubert J. P., Millet J. 1958; Rôle physiologique du cytochrome c de la bactérie chimio- autotrophe Thiobacillus denitrificans. Comptes rendus hebdomadaires des séances de VAcademie des sciences 246:1766–1769
    [Google Scholar]
  20. O’Reilly J. E. 1973; Oxidation-reduction potential of the ferro-ferricyanide systems in buffer solutions. Biochimica et biophysica acta 292:509–515
    [Google Scholar]
  21. Peeters T., Aleem M. I. H. 1970; Oxidation of sulphur compounds and electron transport in Thiobacillus denitrificans. Archiv für Mikrobiologie 71:319–330
    [Google Scholar]
  22. Radcliffe B. C., Nicholas D. J. D. 1970; Some properties of a nitrate reductase from Pseudomonas denitrificans. Biochimica et biophysica acta 205:273–287
    [Google Scholar]
  23. Tate M. E. 1968; Separation of myoinositol pentaphosphates by moving paper electrophoresis (MPE). Analytical Biochemistry 23:141–149
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-100-1-49
Loading
/content/journal/micro/10.1099/00221287-100-1-49
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error