1887

Abstract

SUMMARY: Arginine hydroxamate inhibits the growth of From a large number of mutants isolated as resistant to this arginine analogue, 29 were chosen for further investigation. Most of these shared diminished ability to utilize arginine, citrulline and/or ornithine as sole nitrogen source. All 29 had reduced levels of the catabolic enzymes arginase and ornithine aminotransferase under various conditions in which these enzymes are induced in the parent. In some circumstances, five of the mutants also showed elevated levels of the biosynthetic enzyme ornithine carbamoyltransferase. On the basis of these data, the 29 mutants were divided into six phenotypic classes; in four of these, control of ornithine carbamoyltransferase was the same as in the wild type, while in the other two it was altered. It is suggested that the isolates carry regulatory mutations, and that certain of these may affect simultaneously the formation of arginine catabolic and biosynthetic enzymes. The implication of the latter is that in , as in yeast, controls of the catabolic and biosynthetic pathways are connected.

Single representatives of five of the phenotypic classes carry mutations conferring arginine hydroxamate resistance linked to by transduction with phage PBS1; this did not appear to be true for a representative of the sixth class.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-100-1-177
1977-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/100/1/mic-100-1-177.html?itemId=/content/journal/micro/10.1099/00221287-100-1-177&mimeType=html&fmt=ahah

References

  1. Audit C., Anagnostopoulos C. 1972; Production of stable and persistent unstable heterogenotes in a mutant of Bacillus subtilis. . In Spores V pp. 117–125 Halvorson H. O., Hanson R., Campbell L. L. Edited by Washington D.C.: American Society for Microbiology;
    [Google Scholar]
  2. Baumberg S., Ashcroft E. 1971; Absence of polar effect of frameshift mutations in the E gene of the Escherichia coli argECBH cluster. Journal of General Microbiology 69:365–373
    [Google Scholar]
  3. Broman K., Stalon V., Wiame J.-M. 1975; The duplication of arginine catabolism and the meaning of the two ornithine carbamoyltransferases in Bacillus licheniformis. Biochemical and Biophysical Research Communications 66:821–827
    [Google Scholar]
  4. Clarke P. H., Richmond M. H. 1975 (eds) Genetics and Biochemistry of Pseudomonas. London & New York: Wiley;
    [Google Scholar]
  5. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60:17–28
    [Google Scholar]
  6. Davis R. H. 1962; Consequences of a suppressor gene effective with pyrimidine and pro line mutants of Neurospora. Genetics 47:351–360
    [Google Scholar]
  7. Davis R. H., Mora J. 1968; Mutants of Neurospora crassa deficient in ornithine-δ-transaminase. Journal of Bacteriology 96:383–388
    [Google Scholar]
  8. De Hauwer G., LavallÉ R., Wiame J.-M. 1964; Étude de la pyrroline deshydrogenase et de la regulation du catabolisme de l’arginine et de la proline chez Bacillus subtilis. Biochimica et biophysica acta 81:257–269
    [Google Scholar]
  9. Dubnau D., Goldthwaite C., Smith I., Marmur J. 1967; Genetic mapping in Bacillus subtilis. Journal of Molecular Biology 27:163–185
    [Google Scholar]
  10. Harwood C. R. 1974 Genetic control of arginine enzymes in the bacterium Bacillus subtilis. Ph.D. thesis University of Leeds:
    [Google Scholar]
  11. Hoch S. O., Roth C. W., Crawford I. P., Nester E. W. 1971; Control of tryptophan biosynthesis by the methyl-tryptophan resistance gene in Bacillus subtilis. Journal of Bacteriology 105:38–45
    [Google Scholar]
  12. Isaac J. H., Holloway B. W. 1972; Control of arginine biosynthesis in Pseudomonas aeruginosa. Journal of General Microbiology 73:427–438
    [Google Scholar]
  13. Issaly I. M., Issaly A. S. 1974; Control of ornithine carbamoyltransferase activity by arginase in Bacillus subtilis. European Journal of Biochemistry 49:485–495
    [Google Scholar]
  14. Issaly I. M., Issaly A. S., Reissig J. V. 1970; Carbamyl phosphate biosynthesis in Bacillus subtilis. Biochimica et biophysica acta 198:482–494
    [Google Scholar]
  15. Kisumi M., Kato J., Sugiura M., Chibata I. 1971; Production of l-arginine by arginine hydroxamate resistant mutants of Bacillus subtilis. Applied Microbiology 22:987–991
    [Google Scholar]
  16. Laishley E. J., Bernlohr R. W. 1968a; Catabolite repression of three ‘sporulation enzymes’ during growth of Bacillus licheniformis. Biochemical and Biophysical Research Communications 24:85–90
    [Google Scholar]
  17. Laishley E. J., Bernlohr R. W. 1968b; The regulation and kinetics of the two ornithine transcarb-amylase enzymes in Bacillus licheniformis. Biochimica et biophysica acta 167:547–554
    [Google Scholar]
  18. Lehrer H. I., Jones M. E. 1962; Repression of ornithine carbamoyltransferase of Bacillus subtilis. Biochimica et biophysica acta 65:360–362
    [Google Scholar]
  19. Lepesant J.-A., Kunst F., Lepesant-KejzlarovaÁ J., Dedonder R. 1972; Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Molecular and General Genetics 118:135–160
    [Google Scholar]
  20. Lindgren V., Rutberg L. 1976; Genetic control of the glp system in Bacillus subtilis. Journal of Bacteriology 127:1047–1057
    [Google Scholar]
  21. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  22. Mahler I., Neumann J., Marmur J. 1963; Studies of genetic units controlling arginine biosynthesis in Bacillus subtilis. Biochimica et biophysica acta 72:69–79
    [Google Scholar]
  23. Prescott L. M., Jones M. E. 1969; Modified methods for the determination of carbamyl aspartate. Analytical Biochemistry 32:408–419
    [Google Scholar]
  24. Stalon V. 1972; Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. European Journal of Biochemistry 29:36–46
    [Google Scholar]
  25. Stalon V., Ramos F., Pierard A., Wiame J.-M. 1967; The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochimica et biophysica acta 139:91–97
    [Google Scholar]
  26. Steinberg W. 1974; Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis. Journal of Bacteriology 117:1023–1034
    [Google Scholar]
  27. Takahashi I. 1961; Genetic transduction of Bacillus subtilis. Biochemical and Biophysical Research Communications 5:171–175
    [Google Scholar]
  28. Vogel R. H., Vogel H. J. 1963; Acetylated intermediates of arginine synthesis in Bacillus subtilis. Biochimica et biophysica acta 69:174–176
    [Google Scholar]
  29. Ward J. B., Zahler S. A. 1973; Regulation of leucine biosynthesis in Bacillus subtilis. Journal of Bacteriology 116:727–735
    [Google Scholar]
  30. Wiame J.-M. 1971; The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. Current Topics in Cellular Regulation 4:1–38
    [Google Scholar]
  31. Yoneda Y., Maruo B. 1975; Mutation of Bacillus subtilis causing hyperproduction of a-amylase and protease and its synergistic effect. Journal of Bacteriology 124:48–54
    [Google Scholar]
  32. Young F. E., Smith C., Reilly B. E. 1969; Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. Journal of Bacteriology 98:1087–1097
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-100-1-177
Loading
/content/journal/micro/10.1099/00221287-100-1-177
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error