The Folic Acid and Serine Nutrition of P60 ( P60) Free

Abstract

SUMMARY: P60 ( P60) requires serine for growth under normal conditions. On a medium containing relatively high concentrations of glycine it can dispense with serine provided that () pyridoxal is present, and () either Leucovorin (folinic acid) is added or the atmosphere is enriched with CO Increasing concentrations of CO or Leucovorin decrease the concentration of glycine required to support growth without added serine. Pyridoxal is not necessary for optimal growth with added serine, but the required concentration of the latter is twice as great.

Higher concentrations of -aminobenzoic acid or Leucovorin are required for growth on glycine than on serine. Leucovorin replaces -aminobenzoic acid for growth on serine, and both this factor and CO for growth on glycine. With the basal medium used (containing purines and all other amino-acids) thymidine supports growth in the absence of -aminobenzoic acid only when serine is added.

Growth is not inhibited by sulphonamide when Leucovorin is present; with -aminobenzoic acid there is the usual competition. Pteroylglutamic acid is inactive with this organism.

A valid assay for serine is possible, even with high concentrations of glycine present, when precautions are taken to destroy either Leucovorin or pyridoxal in the samples, and to prevent the atmosphere becoming enriched with CO

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-10-2-267
1954-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/10/2/mic-10-2-267.html?itemId=/content/journal/micro/10.1099/00221287-10-2-267&mimeType=html&fmt=ahah

References

  1. Ajl S. J., Weekman C. H. 1948; Replacement of CO2 in heterotrophic metabolism. Arch. Bioche 19:483
    [Google Scholar]
  2. Barton-Wright E. C. 1952 The Microbiological Assay of the Vitamin B Complex and Amino-acids p. 130 London: Pitman and Sons, Ltd;
    [Google Scholar]
  3. Bond T. J., Bardos T. J., Sibley M., Shive W. 1949; The folinic acid group, a series of new vitamins related to folic acid. J. Amer. chem. Soc 71:3852
    [Google Scholar]
  4. Broquist H. P., Stokstad E. L. R., Jukes T. H. 1950; Some biological and chemical properties of the citrovorum factor. J. biol. Chem 185:399
    [Google Scholar]
  5. Campbell P. N., Work T. S. 1952; The biosynthesis of protein. 1. Uptake of glycine, serine, valine and lysine by the mammary gland of the rabbit. Bioche. J 52:217
    [Google Scholar]
  6. Cosulich D. B., Roth B., Smith J. M., Hultquist M. E., Parker R. P. 1951; Acid transformation products of leucovorin. J. Amer. chem. Soc 73:5006
    [Google Scholar]
  7. Cosulich D. B., Smith J. M., Broquist H. P. 1952; Diastereoisomers of leucovorin. J. Amer. chem. Soc 74:4215
    [Google Scholar]
  8. Cross M. J. 1953; Leuconostoc citrovorum factor and the synthesis of serine by micro-organisms. 6th Int. Congr. Microbiol. Abstr 1121 Rome:
    [Google Scholar]
  9. Deodhar S., Sakami W. 1953; Biosynthesis of serine. Fed. Proc 12:195
    [Google Scholar]
  10. Dunn M. 1949; Determination of amino acids by microbiological assay. Physiol. Rev 29:219
    [Google Scholar]
  11. Ehrensvärd G., Sperber E., Saluste E., Reio L., Stjernholm R. 1947; Metabolic connection between proline and glycine in the amino acid utilisation of Torulopsis utilis. J. biol. Chem 169:759
    [Google Scholar]
  12. Felton E. A., Niven C. F. 1953; The identity of ‘Leuconostoc citrovorum, Strain 8081’. J. Bact 65:482
    [Google Scholar]
  13. Keresztesy J. C., Silverman M. 1951; Crystalline citrovorum factor from liver. J. Amer. chem. Soc 73:5510
    [Google Scholar]
  14. Kidder G. W., Dewey V. C. 1953; Influence of thioctic acid and folic acid on amino-acid synthesis in Tetrahymena. Fed. Proc 12:230
    [Google Scholar]
  15. Lampen J. O., Jones M. J., Roepke R. R. 1949; Mutant strains of Escherichia coli unable to synthesize p-aminobenzoic acid. J. biol. Chem 180:423
    [Google Scholar]
  16. Lascelles J., Woods D. D. 1950; Synthesis of serine by micro-organisms. Nature; Lond: 166649
    [Google Scholar]
  17. Lascelles J., Cross M. J., Woods D. D. 1951; Leuconostoc citrovorum factor and the synthesis of serine by micro-organisms. Bioche. J 49:Ixvi
    [Google Scholar]
  18. Lwoff A., Monod J. 1947; Essai d’analyse du rôle de l’anhydride carbonique dans la croissance microbienne. Ann. Inst. Pasteur 73:323
    [Google Scholar]
  19. Lyman C. M., Kuiken K. A. 1948; Effect of vitamin B6 on the utilisation of D amino acids by lactic acid bacteria. Fed. Proc 7:170
    [Google Scholar]
  20. Lyman C. M., Moseley D., Wood S., Butler B., Hale F. 1947; Some chemical factors which influence the amino acid requirements of the lactic acid bacteria. J. biol. Chem 167:177
    [Google Scholar]
  21. McCleskey C. S. 1952; The identity of strain P-60 of Leuconostoc mesenteroides. J. Bact 64:140
    [Google Scholar]
  22. Nepple H. M., Wright L. D., Skeggs H. R. 1951; The role of folic acid in the nutrition of Lactobacillus bifidtis. Bact. Proc p. 143
    [Google Scholar]
  23. Nimmo-Smith R. H., Lascelles J., Woods D. D. 1948; The synthesis of ‘folic acid’ by Streptobaderium plantarum and its inhibition by sulphonamides. Brit. J. exp. Path 29:264
    [Google Scholar]
  24. Pennington D. 1946; Assay of p-aminobenzoic acid. Science 103:397
    [Google Scholar]
  25. Plaut G. W. E., Betheil J. J., Lardy H. A. 1950; The relationship of folic acid to formate metabolism in the rat. J. biol. Chem 184:795
    [Google Scholar]
  26. Pohland A., Flynn E. H., Jones R. G., Shive W. 1951; A proposed structure for folinic acid-SF, a growth factor derived from pteroylglutamic acid. J. Amer. chem. Soc 73:3247
    [Google Scholar]
  27. Roepke R. R., Libby R. L., Small M. H. 1944; Mutation or variation of Escherichia coli with respect to growth requirements. J. Bact 48:401
    [Google Scholar]
  28. Roth B., Hultquist M. E., Fahrenbach M. J., Cosulich D. B., Broquist H. P., Brockman J. A., Smith J. M., Parker R. P., Stokstad E. L. R., Jukes T. H. 1952; Synthesis of Leucovorin. J. Amer. chem. Soc 74:3247
    [Google Scholar]
  29. Sakami W. 1948; The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem 176:995
    [Google Scholar]
  30. Sakami W. 1949; The conversion of glycine into serine in the intact rat. J. biol. Chem 178:519
    [Google Scholar]
  31. Sauberlich H. E. 1952; Comparative studies with the natural and synthetic citrovorum factor. J. biol. Chem 195:337
    [Google Scholar]
  32. Sauberlich H. E., Baumann C. A. 1948; A factor required for the growth of Leuconostoc citrovorum. J. biol. Chem 176:165
    [Google Scholar]
  33. Shemin D. 1946; The biological conversion of l-serine to glycine. J. biol. Chem 162:297
    [Google Scholar]
  34. Shive W. 1951; The functions of B-vitamins in the biosynthesis of purines and pyrimidines. Vitam. & Horm 9:75
    [Google Scholar]
  35. Shive W., Eakin R. E., Harding W. M., Ravel J. M., Sutherland J. E. 1948; A crystalline factor functionally related to folic acid. J. Amer. chem. Soc 70:2299
    [Google Scholar]
  36. Siegel I., Lafaye J. 1950; Formation of the β-carbon of serine from formaldehyde. Proc. Soc. exp. Biol., N.Y 74:620
    [Google Scholar]
  37. Snell E. E. 1945; The vitamin B6 group. V. The reversible interconversion of pyridoxal and pyridoxamine by transamination reactions. J. Amer. chem. Soc 67:194
    [Google Scholar]
  38. Snell E. E. 1951; Growth factors in bacterial nutrition. Chapter in Plant Growth Substances p. 431 Skoog F., Murray E. G. D., Hitchens A. P. Ed Wisconsin University Press;
    [Google Scholar]
  39. Steele B. F., Sauberlich H. E., Reynolds M. S., Baumann C. A. 1949; Media for Leuconostoc mesenteroides P-60 and Leuconostoc citrovorum 8081. J. biol. Chem 177:533
    [Google Scholar]
  40. Tatum E. L. 1949; Amino acid metabolism in mutant strains of micro-organisms. Fed. Proc 8:511
    [Google Scholar]
  41. Whiteside-Carlson V., Carlson W. W. 1949; The vitamin requirements of Leuconostoc for dextran synthesis. J. Bact 58:135
    [Google Scholar]
  42. Winkler K. C., de Haan P. G. 1948; On the action of sulfanilamide. XII. A set of non-competitive sulfanilamide antagonists for Escherichia coli. Arch. Bioche 18:97
    [Google Scholar]
  43. Wold F., Sirny R. J. 1953; Effect of folinic acid on serine synthesis in Leuconostoc mesenteroides P-60. Fed. Proc 12:292
    [Google Scholar]
  44. Wood W. A., Gunsalus I. C. 1951; d-Alanine formation: a racemase in Streptococcus faecalis. J. biol. Chem 190:403
    [Google Scholar]
  45. Woods D. D. 1950; Biochemical significance of the competition between p-aminobenzoic acid and the sulphonamides. Ann. N.Y. Acad. Sci 52:1199
    [Google Scholar]
  46. Woods D. D. 1952; The function of folic acid and related growth factors in the metabolism of micro-organisms. Symposium sur le méabolisme microbien p. 86 Int. Congr. Biochem. 2. Paris.
    [Google Scholar]
  47. Woods D. D. 1953; Folic acid and related compounds in the metabolism of micro-organisms. Brit. med. Bull 9:122
    [Google Scholar]
  48. Wright B. E. 1951; Enhancement of the normal reversion-rate of a serineless Escherichia coli mutant by certain organic acids. Nature; Lond: 1681087
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-10-2-267
Loading
/content/journal/micro/10.1099/00221287-10-2-267
Loading

Data & Media loading...

Most cited Most Cited RSS feed