- Volume 8, Issue 7, 2022
Volume 8, Issue 7, 2022
- Bioresources
-
- Functional Genomics and Microbe–Niche Interactions
-
-
ActinoBase: tools and protocols for researchers working on Streptomyces and other filamentous actinobacteria
Morgan Anne Feeney, Jake Terry Newitt, Emily Addington, Lis Algora-Gallardo, Craig Allan, Lucas Balis, Anna S. Birke, Laia Castaño-Espriu, Louise K. Charkoudian, Rebecca Devine, Damien Gayrard, Jacob Hamilton, Oliver Hennrich, Paul A. Hoskisson, Molly Keith-Baker, Joshua G. Klein, Worarat Kruasuwan, David R. Mark, Yvonne Mast, Rebecca E. McHugh, Thomas C. McLean, Elmira Mohit, John T. Munnoch, Jordan Murray, Katie Noble, Hiroshi Otani, Jonathan Parra, Camila F. Pereira, Louisa Perry, Linamaria Pintor-Escobar, Leighton Pritchard, Samuel M. M. Prudence, Alicia H. Russell, Jana K. Schniete, Ryan F. Seipke, Nelly Sélem-Mojica, Agustina Undabarrena, Kristiina Vind, Gilles P. van Wezel, Barrie Wilkinson, Sarah F. Worsley, Katherine R. Duncan, Lorena T. Fernández-Martínez and Matthew I. HutchingsActinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [ 1 ] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [ 2 ] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.
-
- Research Articles
-
- Genomic Methodologies
-
-
Fine-grain population structure and transmission patterns of Mycobacterium tuberculosis in southern Mozambique, a high TB/HIV burden area
Belén Saavedra Cervera, Mariana G. López, Álvaro Chiner-Oms, Ana María García, Irving Cancino-Muñoz, Manuela Torres-Puente, Luis Villamayor, Carlos Madrazo-Moya, Edson Mambuque, Guillermo Victor Sequera, Durval Respeito, Silvia Blanco, Orvalho Augusto, Elisa López-Varela, Alberto L. García-Basteiro and Iñaki ComasGenomic studies of the Mycobacterium tuberculosis complex (MTBC) might shed light on the dynamics of its transmission, especially in high-burden settings, where recent outbreaks are embedded in the complex natural history of the disease. To this end, we conducted a 1 year prospective surveillance-based study in Mozambique. We applied whole-genome sequencing (WGS) to 295 positive cultures. We fully characterized MTBC isolates by phylogenetics and dating evaluation, and carried out a molecular epidemiology analysis to investigate further associations with pre-defined transmission risk factors. The majority of strains (49.5%, 136/275) belonged to lineage (L) 4; 57.8 % of them (159/275) were in genomic transmission clusters (cut-off 5 SNPs), and a strikingly high proportion (45.5%) shared an identical genotype (0 SNP pairwise distance). We found two ‘likely endemic’ clades, comprising 67 strains, belonging to L1.2, which dated back to the late 19th century and were associated with recent spread among people living with human immunodeficiency virus (PLHIV). We describe for the first time the population structure of MTBC in our region, a high tuberculosis (TB)/HIV burden area. Clustering analysis revealed an unforeseen pattern of spread and high rates of progression to active TB, suggesting weaknesses in TB control activities. The long-term presence of local strains in Mozambique, which were responsible for large transmission among HIV/TB-coinfected patients, calls into question the role of HIV in TB transmission.
-
- Microbial Communities
-
-
Genomic diversity of genus Limosilactobacillus
More LessThe genus Limosilactobacillus (formerly Lactobacillus ) contains multiple species considered to be adapted to vertebrates, yet their genomic diversity has not been explored. In this study, we performed comparative genomic analysis of Limosilactobacillus (22 species; 332 genomes) isolated from different niches, further focusing on human strains (11 species; 74 genomes) and their adaptation features to specific body sites. Phylogenomic analysis of Limosilactobacillus showed misidentification of some strains deposited in public databases and existence of putative novel Limosilactobacillus species. The pangenome analysis revealed a remarkable genomic diversity (only 1.3 % of gene clusters are shared), and we did not observe a strong association of the accessory genome with different niches. The pangenome of Limosilactobacillus reuteri and Limosilactobacillus fermentum was open, suggesting that acquisition of genes is still occurring. Although most Limosilactobacillus were predicted as antibiotic susceptible (83%), acquired antibiotic-resistance genes were common in L. reuteri from food-producing animals. Genes related to lactic acid isoform production (>95 %) and putative bacteriocins (70.2%) were identified in most Limosilactobacillus strains, while prophages (55.4%) and CRISPR-Cas systems (32.0%) were less prevalent. Among strains from human sources, several metabolic pathways were predicted as conserved and completed. Their accessory genome was highly variable and did not cluster according to different human body sites, with some exceptions (urogenital Limosilactobacillus vaginalis , Limosilactobacillus portuensis , Limosilactobacillus urinaemulieris and Limosilactobacillus coleohominis or gastrointestinal Limosilactobacillus mucosae ). Moreover, we identified 12 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues that were significantly enriched in strains from particular body sites. We concluded that evolution of the highly diverse Limosilactobacillus is complex and not always related to niche or human body site origin.
-
- Pathogens and Epidemiology
-
-
Distinct Streptococcus pneumoniae cause invasive disease in Papua New Guinea
Streptococcus pneumoniae is a key contributor to childhood morbidity and mortality in Papua New Guinea (PNG). For the first time, whole genome sequencing of 174 isolates has enabled detailed characterisation of diverse S. pneumoniae causing invasive disease in young children in PNG, 1989-2014. This study captures the baseline S. pneumoniae population prior to the introduction of 13-valent pneumococcal conjugate vaccine (PCV13) into the national childhood immunisation programme in 2014. Relationships amongst lineages, serotypes and antimicrobial resistance traits were characterised, and the population was viewed in the context of a global collection of isolates. The analyses highlighted adiverse S. pneumoniae population associated with invasive disease in PNG, with 45 unique Global Pneumococcal Sequence Clusters (GPSCs) observed amongst the 174 isolates reflecting multiple lineages observed in PNG that have not been identified in other geographic locations. The majority of isolates were from children with meningitis, of which 52% (n=72) expressed non-PCV13 serotypes. Over a third of isolates were predicted to be resistant to at least one antimicrobial. PCV13 serotype isolates had 10.1 times the odds of being multidrug-resistant (MDR) compared to non-vaccine serotype isolates, and no isolates with GPSCs unique to PNG were MDR. Serotype 2 was the most commonly identified serotype; we identified a highly clonal cluster of serotype 2 isolates unique to PNG, and a distinct second cluster indicative of long-distance transmission. Ongoing surveillance, including whole-genome sequencing, is needed to ascertain the impact of the national PCV13 programme upon the S. pneumoniae population, including serotype replacement and antimicrobial resistance traits.
-
-
-
Replacement of the Alpha variant of SARS-CoV-2 by the Delta variant in Lebanon between April and June 2021
Georgi Merhi, Alexander J. Trotter, Leonardo de Oliveira Martins, Jad Koweyes, Thanh Le-Viet, Hala Abou Naja, Mona Al Buaini, Sophie J. Prosolek, Nabil-Fareed Alikhan, Martin Lott, Tatiana Tohmeh, Bassam Badran, Orla J. Jupp, Sarah Gardner, Matthew W. Felgate, Kate A. Makin, Janine M. Wilkinson, Rachael Stanley, Abdul K. Sesay, Mark A. Webber, Rose K. Davidson, Nada Ghosn, Mark Pallen, Hamad Hasan, Andrew J. Page and Sima TokajianThe COVID-19 pandemic continues to expand globally, with case numbers rising in many areas of the world, including the Eastern Mediterranean Region. Lebanon experienced its largest wave of COVID-19 infections from January to April 2021. Limited genomic surveillance was undertaken, with just 26 SARS-CoV-2 genomes available for this period, nine of which were from travellers from Lebanon detected by other countries. Additional genome sequencing is thus needed to allow surveillance of variants in circulation. In total, 905 SARS-CoV-2 genomes were sequenced using the ARTIC protocol. The genomes were derived from SARS-CoV-2-positive samples, selected retrospectively from the sentinel COVID-19 surveillance network, to capture diversity of location, sampling time, sex, nationality and age. Although 16 PANGO lineages were circulating in Lebanon in January 2021, by February there were just four, with the Alpha variant accounting for 97 % of samples. In the following 2 months, all samples contained the Alpha variant. However, this had changed dramatically by June and July 2021, when all samples belonged to the Delta variant. This study documents a ten-fold increase in the number of SARS-CoV-2 genomes available from Lebanon. The Alpha variant, first detected in the UK, rapidly swept through Lebanon, causing the country's largest wave to date, which peaked in January 2021. The Alpha variant was introduced to Lebanon multiple times despite travel restrictions, but the source of these introductions remains uncertain. The Delta variant was detected in Gambia in travellers from Lebanon in mid-May, suggesting community transmission in Lebanon several weeks before this variant was detected in the country. Prospective sequencing in June/July 2021 showed that the Delta variant had completely replaced the Alpha variant in under 6 weeks.
-
-
-
Comparative genomics of Nocardia seriolae reveals recent importation and subsequent widespread dissemination in mariculture farms in the South Central Coast region, Vietnam
Between 2010 and 2015, nocardiosis outbreaks caused by Nocardia seriolae affected many permit farms throughout Vietnam, causing mass fish mortalities. To understand the biology, origin and epidemiology of these outbreaks, 20 N . seriolae strains collected from farms in four provinces in the South Central Coast region of Vietnam, along with two Taiwanese strains, were analysed using genetics and genomics. PFGE identified a single cluster amongst all Vietnamese strains that was distinct from the Taiwanese strains. Like the PFGE findings, phylogenomic and SNP genotyping analyses revealed that all Vietnamese N. seriolae strains belonged to a single, unique clade. Strains fell into two subclades that differed by 103 SNPs, with almost no diversity within clades (0–5 SNPs). There was no association between geographical origin and subclade placement, suggesting frequent N. seriolae transmission between Vietnamese mariculture facilities during the outbreaks. The Vietnamese strains shared a common ancestor with strains from Japan and China, with the closest strain, UTF1 from Japan, differing by just 220 SNPs from the Vietnamese ancestral node. Draft Vietnamese genomes range from 7.55 to 7.96 Mbp in size, have an average G+C content of 68.2 % and encode 7 602–7958 predicted genes. Several putative virulence factors were identified, including genes associated with host cell adhesion, invasion, intracellular survival, antibiotic and toxic compound resistance, and haemolysin biosynthesis. Our findings provide important new insights into the epidemiology and pathogenicity of N. seriolae and will aid future vaccine development and disease management strategies, with the ultimate goal of nocardiosis-free aquaculture.
-
- Short Communications
-
- Functional Genomics and Microbe–Niche Interactions
-
-
Novel internalin P homologs in Listeria
More LessListeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of Lm and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross-protective barriers, including the placenta. One family of virulence factors, internalins, contributes to Lm pathogenicity by inducing specific uptake and conferring tissue tropism. Over 25 internalins have been identified thus far, but only a few have been extensively studied. Internalins contain leucine-rich repeat (LRR) domains that enable protein-protein interactions, allowing Lm to bind host proteins. Notably, other Listeria species express internalins but cannot colonize human hosts, prompting questions regarding the evolution of internalins within the genus Listeria . Internalin P (InlP) promotes placental colonization through interaction with the host protein afadin. Although prior studies of InlP have begun to elucidate its role in Lm pathogenesis, there remains a lack of information regarding homologs in other Listeria species. Here, we have used a computational evolutionary approach to identify InlP homologs in additional Listeria species. We found that Listeria ivanovii londoniensis (Liv) and Listeria seeligeri (Ls) encode InlP homologs. We also found InlP-like homologs in Listeria innocua and the recently identified species Listeria costaricensis . All newly identified homologs lack the full-length LRR6 and LRR7 domains found in Lm’s InlP. These findings are informative regarding the evolution of one key Lm virulence factor, InlP, and serve as a springboard for future evolutionary studies of Lm pathogenesis as well as mechanistic studies of Listeria internalins.
-
- Microbial Communities
-
-
Genome-resolved metagenomics reveals novel archaeal and bacterial genomes from Amazonian forest and pasture soils
Amazonian soil microbial communities are known to be affected by the forest-to-pasture conversion, but the identity and metabolic potential of most of their organisms remain poorly characterized. To contribute to the understanding of these communities, here we describe metagenome-assembled genomes (MAGs) recovered from 12 forest and pasture soil metagenomes of the Brazilian Eastern Amazon. We obtained 11 forest and 30 pasture MAGs (≥50% of completeness and ≤10 % of contamination), distributed among two archaeal and 11 bacterial phyla. The taxonomic classification results suggest that most MAGs may represent potential novel microbial taxa. MAGs selected for further evaluation included members of Acidobacteriota , Actinobacteriota , Desulfobacterota_B, Desulfobacterota_F, Dormibacterota, Eremiobacterota , Halobacteriota, Proteobacteria , and Thermoproteota , thus revealing their roles in carbohydrate degradation and mercury detoxification as well as in the sulphur, nitrogen, and methane cycles. A methane-producing Archaea of the genus Methanosarcina was almost exclusively recovered from pasture soils, which can be linked to a sink-to-source shift after the forest-to-pasture conversion. The novel MAGs constitute an important resource to help us unravel the yet-unknown microbial diversity in Amazonian soils and its functional potential and, consequently, the responses of these microorganisms to land-use change.
-