- Volume 8, Issue 1, 2022
Volume 8, Issue 1, 2022
- Bioresources
-
- Genomic Methodologies
-
-
ResFinder – an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes
Antimicrobial resistance (AMR) is one of the most important health threats globally. The ability to accurately identify resistant bacterial isolates and the individual antimicrobial resistance genes (ARGs) is essential for understanding the evolution and emergence of AMR and to provide appropriate treatment. The rapid developments in next-generation sequencing technologies have made this technology available to researchers and microbiologists at routine laboratories around the world. However, tools available for those with limited experience with bioinformatics are lacking, especially to enable researchers and microbiologists in low- and middle-income countries (LMICs) to perform their own studies. The CGE-tools (Center for Genomic Epidemiology) including ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) was developed to provide freely available easy to use online bioinformatic tools allowing inexperienced researchers and microbiologists to perform simple bioinformatic analyses. The main purpose was and is to provide these solutions for people involved in frontline diagnosis especially in LMICs. Since its original publication in 2012, ResFinder has undergone a number of improvements including improvement of the code and databases, inclusion of point mutations for selected bacterial species and predictions of phenotypes also for selected species. As of 28 September 2021, 820 803 analyses have been performed using ResFinder from 61 776 IP-addresses in 171 countries. ResFinder clearly fulfills a need for several people around the globe and we hope to be able to continue to provide this service free of charge in the future. We also hope and expect to provide further improvements including phenotypic predictions for additional bacterial species.
-
- Research Articles
-
- Genomic Methodologies
-
-
Hackflex: low-cost, high-throughput, Illumina Nextera Flex library construction
More LessWe developed a low-cost method for the production of Illumina-compatible sequencing libraries that allows up to 14 times more libraries for high-throughput Illumina sequencing to be generated for the same cost. We call this new method Hackflex. The quality of library preparation was tested by constructing libraries from Escherichia coli MG1655 genomic DNA using either Hackflex, standard Nextera Flex (recently renamed as Illumina DNA Prep) or a variation of standard Nextera Flex in which the bead-linked transposase is diluted prior to use. In order to test the library quality for genomes with a higher and a lower G+C content, library construction methods were also tested on Pseudomonas aeruginosa PAO1 and Staphylococcus aureus ATCC 25923, respectively. We demonstrated that Hackflex can produce high-quality libraries and yields a highly uniform coverage, equivalent to the standard Nextera Flex kit. We show that strongly size-selected libraries produce sufficient yield and complexity to support de novo microbial genome assembly, and that assemblies of the large-insert libraries can be much more contiguous than standard libraries without strong size selection. We introduce a new set of sample barcodes that are distinct from standard Illumina barcodes, enabling Hackflex samples to be multiplexed with samples barcoded using standard Illumina kits. Using Hackflex, we were able to achieve a per-sample reagent cost for library prep of A$7.22 (Australian dollars) (US $5.60; UK £3.87, £1=A$1.87), which is 9.87 times lower than the standard Nextera Flex protocol at advertised retail price. An additional simple modification and further simplification of the protocol by omitting the wash step enables a further price reduction to reach an overall 14-fold cost saving. This method will allow researchers to construct more libraries within a given budget, thereby yielding more data and facilitating research programmes where sequencing large numbers of libraries is beneficial.
-
- Functional Genomics and Microbe–Niche Interactions
-
-
Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria
Lactate accumulation in the human gut is linked to a range of deleterious health impacts. However, lactate is consumed and converted to the beneficial short-chain fatty acids butyrate and propionate by indigenous lactate-utilizing bacteria. To better understand the underlying genetic basis for lactate utilization, transcriptomic analyses were performed for two prominent lactate-utilizing species from the human gut, Anaerobutyricum soehngenii and Coprococcus catus , during growth on lactate, hexose sugar or hexose plus lactate. In A. soehngenii L2-7 six genes of the lactate utilization (lct) cluster, including NAD-independent d-lactate dehydrogenase (d-iLDH), were co-ordinately upregulated during growth on equimolar d- and l-lactate (dl-lactate). Upregulated genes included an acyl-CoA dehydrogenase related to butyryl-CoA dehydrogenase, which may play a role in transferring reducing equivalents between reduction of crotonyl-CoA and oxidation of lactate. Genes upregulated in C. catus GD/7 included a six-gene cluster (lap) encoding propionyl CoA-transferase, a putative lactoyl-CoA epimerase, lactoyl-CoA dehydratase and lactate permease, and two unlinked acyl-CoA dehydrogenase genes that are candidates for acryloyl-CoA reductase. A d-iLDH homologue in C. catus is encoded by a separate, partial lct, gene cluster, but not upregulated on lactate. While C. catus converts three mols of dl-lactate via the acrylate pathway to two mols propionate and one mol acetate, some of the acetate can be re-used with additional lactate to produce butyrate. A key regulatory difference is that while glucose partially repressed lct cluster expression in A. soehngenii , there was no repression of lactate-utilization genes by fructose in the non-glucose utilizer C. catus . This suggests that these species could occupy different ecological niches for lactate utilization in the gut, which may be important factors to consider when developing lactate-utilizing bacteria as novel candidate probiotics.
-
-
-
Transcriptomic analysis of Pseudomonas ogarae F113 reveals the antagonistic roles of AmrZ and FleQ during rhizosphere adaption
Rhizosphere colonization by bacteria involves molecular and cellular mechanisms, such as motility and chemotaxis, biofilm formation, metabolic versatility, or biosynthesis of secondary metabolites, among others. Nonetheless, there is limited knowledge concerning the main regulatory factors that drive the rhizosphere colonization process. Here we show the importance of the AmrZ and FleQ transcription factors for adaption in the plant growth-promoting rhizobacterium (PGPR) and rhizosphere colonization model Pseudomonas ogarae F113. RNA-Seq analyses of P. ogarae F113 grown in liquid cultures either in exponential and stationary growth phase, and rhizosphere conditions, revealed that rhizosphere is a key driver of global changes in gene expression in this bacterium. Regarding the genetic background, this work has revealed that a mutation in fleQ causes considerably more alterations in the gene expression profile of this bacterium than a mutation in amrZ under rhizosphere conditions. The functional analysis has revealed that in P. ogarae F113, the transcription factors AmrZ and FleQ regulate genes involved in diverse bacterial functions. Notably, in the rhizosphere, these transcription factors antagonistically regulate genes related to motility, biofilm formation, nitrogen, sulfur, and amino acid metabolism, transport, signalling, and secretion, especially the type VI secretion systems. These results define the regulon of two important bifunctional transcriptional regulators in pseudomonads during the process of rhizosphere colonization.
-
-
-
The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors
The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87–22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87–22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the ‘green light’ to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs’ expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei .
-
- Pathogens and Epidemiology
-
-
Genomic evolution of the globally disseminated multidrug-resistant Klebsiella pneumoniae clonal group 147
More LessThe rapid emergence of multidrug-resistant Klebsiella pneumoniae is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework (beast) based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, phaster, ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: bla NDM-5 and two copies of bla OXA-181 in the chromosome, and a second copy of bla NDM-5 on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63 % carried a carbapenemase gene and 83 % harboured bla CTX-M. All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74 %, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20 %, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. K. pneumoniae CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal bla NDM-5. Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo–spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.
-
-
-
Genome diversity of domesticated Acinetobacter baumannii ATCC 19606T strains
Acinetobacter baumannii has emerged as an important opportunistic pathogen worldwide, being responsible for large outbreaks for nosocomial infections, primarily in intensive care units. A. baumannii ATCC 19606T is the species type strain, and a reference organism in many laboratories due to its low virulence, amenability to genetic manipulation and extensive antibiotic susceptibility. We wondered if frequent propagation of A. baumannii ATCC 19606T in different laboratories may have driven micro- and macro-evolutionary events that could determine inter-laboratory differences of genome-based data. By combining Illumina MiSeq, MinION and Sanger technologies, we generated a high-quality whole-genome sequence of A. baumannii ATCC 19606T, then performed a comparative genome analysis between A. baumannii ATCC 19606T strains from several research laboratories and a reference collection. Differences between publicly available ATCC 19606T genome sequences were observed, including SNPs, macro- and micro-deletions, and the uneven presence of a 52 kb prophage belonging to genus Vieuvirus. Two plasmids, pMAC and p1ATCC19606, were invariably detected in all tested strains. The presence of a putative replicase, a replication origin containing four 22-mer direct repeats, and a toxin-antitoxin system implicated in plasmid stability were predicted by in silico analysis of p1ATCC19606, and experimentally confirmed. This work refines the sequence, structure and functional annotation of the A. baumannii ATCC 19606T genome, and highlights some remarkable differences between domesticated strains, likely resulting from genetic drift.
-
-
-
Comparative genomics of Bordetella pertussis isolates from New Zealand, a country with an uncommonly high incidence of whooping cough
Whooping cough, the respiratory disease caused by Bordetella pertussis , has undergone a wide-spread resurgence over the last several decades. Previously, we developed a pipeline to assemble the repetitive B. pertussis genome into closed sequences using hybrid nanopore and Illumina sequencing. Here, this sequencing pipeline was used to conduct a more high-throughput, longitudinal screen of 66 strains isolated between 1982 and 2018 in New Zealand. New Zealand has a higher incidence of whooping cough than many other countries; usually at least twice as many cases per 100000 people as the USA and UK and often even higher, despite similar rates of vaccine uptake. To the best of our knowledge, these strains are the first New Zealand B. pertussis isolates to be sequenced. The analyses here show that, on the whole, genomic trends in New Zealand B. pertussis isolates, such as changing allelic profile in vaccine-related genes and increasing pertactin deficiency, have paralleled those seen elsewhere in the world. At the same time, phylogenetic comparisons of the New Zealand isolates with global isolates suggest that a number of strains are circulating in New Zealand, which cluster separately from other global strains, but which are closely related to each other. The results of this study add to a growing body of knowledge regarding recent changes to the B. pertussis genome, and are the first genetic investigation into B. pertussis isolates from New Zealand.
-
-
-
The promiscuous and highly mobile resistome of Acinetobacter baumannii
More LessAntimicrobial resistance (AR) is a major global threat to public health. Understanding the population dynamics of AR is critical to restrain and control this issue. However, no study has provided a global picture of the whole resistome of Acinetobacter baumannii , a very important nosocomial pathogen. Here we analyse 1450+ genomes (covering >40 countries and >4 decades) to infer the global population dynamics of the resistome of this species. We show that gene flow and horizontal transfer have driven the dissemination of AR genes in A. baumannii . We found considerable variation in AR gene content across lineages. Although the individual AR gene histories have been affected by recombination, the AR gene content has been shaped by the phylogeny. Furthermore, many AR genes have been transferred to other well-known pathogens, such as Pseudomonas aeruginosa or Klebsiella pneumoniae . Despite using this massive data set, we were not able to sample the whole diversity of AR genes, which suggests that this species has an open resistome. Our results highlight the high mobilization risk of AR genes between important pathogens. On a broader perspective, this study gives a framework for an emerging perspective (resistome-centric) on the genomic epidemiology (and surveillance) of bacterial pathogens.
-
-
-
Large-scale characterization of the macrolide resistome reveals high diversity and several new pathogen-associated genes
Macrolides are broad-spectrum antibiotics used to treat a range of infections. Resistance to macrolides is often conferred by mobile resistance genes encoding Erm methyltransferases or Mph phosphotransferases. New erm and mph genes keep being discovered in clinical settings but their origins remain unknown, as is the type of macrolide resistance genes that will appear in the future. In this study, we used optimized hidden Markov models to characterize the macrolide resistome. Over 16 terabases of genomic and metagenomic data, representing a large taxonomic diversity (11 030 species) and diverse environments (1944 metagenomic samples), were searched for the presence of erm and mph genes. From this data, we predicted 28 340 macrolide resistance genes encoding 2892 unique protein sequences, which were clustered into 663 gene families (<70 % amino acid identity), of which 619 (94 %) were previously uncharacterized. This included six new resistance gene families, which were located on mobile genetic elements in pathogens. The function of ten predicted new resistance genes were experimentally validated in Escherichia coli using a growth assay. Among the ten tested genes, seven conferred increased resistance to erythromycin, with five genes additionally conferring increased resistance to azithromycin, showing that our models can be used to predict new functional resistance genes. Our analysis also showed that macrolide resistance genes have diverse origins and have transferred horizontally over large phylogenetic distances into human pathogens. This study expands the known macrolide resistome more than ten-fold, provides insights into its evolution, and demonstrates how computational screening can identify new resistance genes before they become a significant clinical problem.
-
- Short Communications
-
- Microbial Communities
-
-
Novel insights into the role of the mobilome in ecological diversification and success of Staphylococcus haemolyticus as an opportunistic pathogen
More LessStaphylococcus haemolyticus is a species of coagulase-negative staphylococci that has primarily been studied as a human skin microbiome member and an emerging nosocomial pathogen. Here, we present the first complete genome of S. haemolyticus strains SE3.9, SE3.8 and SE2.14 reported as an endophyte of rice seed. Detailed investigation of the genome dynamics of strains from diverse origins revealed an expanded genome size in clinical isolates, and a role of many insertion sequence (IS) elements in strain diversification. Interestingly, several of the IS elements are also unique or enriched in a particular habitat. Comparative studies also revealed the potential movement of mobile elements from rice endophytic S. haemolyticus to strains from other pathogenic species such as Staphylococcus aureus . The study highlights the importance of ecological studies in the systematic understanding of genome plasticity and management of medically important Staphylococcus species.
-
- Methods
-
- Pathogens and Epidemiology
-
-
regentrans: a framework and R package for using genomics to study regional pathogen transmission
More LessIncreasing evidence of regional pathogen transmission networks highlights the importance of investigating the dissemination of multidrug-resistant organisms (MDROs) across a region to identify where transmission is occurring and how pathogens move across regions. We developed a framework for investigating MDRO regional transmission dynamics using whole-genome sequencing data and created regentrans, an easy-to-use, open source R package that implements these methods (https://github.com/Snitkin-Lab-Umich/regentrans). Using a dataset of over 400 carbapenem-resistant isolates of Klebsiella pneumoniae collected from patients in 21 long-term acute care hospitals over a one-year period, we demonstrate how to use our framework to gain insights into differences in inter- and intra-facility transmission across different facilities and over time. This framework and corresponding R package will allow investigators to better understand the origins and transmission patterns of MDROs, which is the first step in understanding how to stop transmission at the regional level.
-
- Personal Views
-
- Pathogens and Epidemiology
-
-
Applied Bioinformatics and Public Health Microbiology: challenges, discoveries and innovations during a pandemic
More LessThe eighth Applied Bioinformatics and Public Health Microbiology (ABPHM) conference showcased the recent acceleration of bioinformatic approaches used in public health settings. This included approaches for the surveillance of infectious diseases, understanding microbial evolution and diversity and pathogen interactions. Overall, the meeting highlighted the importance of data-driven approaches used by scientists during the COVID-19 pandemic.
-