-
Volume 7,
Issue 9,
2021
Volume 7, Issue 9, 2021
- Reviews
-
- Evolution and Responses to Interventions
-
-
The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large
More LessThe nucleocytoplasmic large DNA viruses (NCLDVs) are a diverse group that currently contain the largest known virions and genomes, also called giant viruses. The first giant virus was isolated and described nearly 20 years ago. Their genome sizes were larger than for any other known virus at the time and it contained a number of genes that had not been previously described in any virus. The origin and evolution of these unusually complex viruses has been puzzling, and various mechanisms have been put forward to explain how some NCLDVs could have reached genome sizes and coding capacity overlapping with those of cellular microbes. Here we critically discuss the evidence and arguments on this topic. We have also updated and systematically reanalysed protein families of the NCLDVs to further study their origin and evolution. Our analyses further highlight the small number of widely shared genes and extreme genomic plasticity among NCLDVs that are shaped via combinations of gene duplications, deletions, lateral gene transfers and de novo creation of protein-coding genes. The dramatic expansions of the genome size and protein-coding gene capacity characteristic of some NCLDVs is now increasingly understood to be driven by environmental factors rather than reflecting relationships to an ancient common ancestor among a hypothetical cellular lineage. Thus, the evolution of NCLDVs is writ large viral, and their origin, like all other viral lineages, remains unknown.
-
- Research Articles
-
- Genomic Methodologies
-
-
Whole-genome-based phylogenomic analysis of the Belgian 2016–2017 influenza A(H3N2) outbreak season allows improved surveillance
Seasonal influenza epidemics are associated with high mortality and morbidity in the human population. Influenza surveillance is critical for providing information to national influenza programmes and for making vaccine composition predictions. Vaccination prevents viral infections, but rapid influenza evolution results in emerging mutants that differ antigenically from vaccine strains. Current influenza surveillance relies on Sanger sequencing of the haemagglutinin (HA) gene. Its classification according to World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC) guidelines is based on combining certain genotypic amino acid mutations and phylogenetic analysis. Next-generation sequencing technologies enable a shift to whole-genome sequencing (WGS) for influenza surveillance, but this requires laboratory workflow adaptations and advanced bioinformatics workflows. In this study, 253 influenza A(H3N2) positive clinical specimens from the 2016–2017 Belgian season underwent WGS using the Illumina MiSeq system. HA-based classification according to WHO/ECDC guidelines did not allow classification of all samples. A new approach, considering the whole genome, was investigated based on using powerful phylogenomic tools including beast and Nextstrain, which substantially improved phylogenetic classification. Moreover, Bayesian inference via beast facilitated reassortment detection by both manual inspection and computational methods, detecting intra-subtype reassortants at an estimated rate of 15 %. Real-time analysis (i.e. as an outbreak is ongoing) via Nextstrain allowed positioning of the Belgian isolates into the globally circulating context. Finally, integration of patient data with phylogenetic groups and reassortment status allowed detection of several associations that would have been missed when solely considering HA, such as hospitalized patients being more likely to be infected with A(H3N2) reassortants, and the possibility to link several phylogenetic groups to disease severity indicators could be relevant for epidemiological monitoring. Our study demonstrates that WGS offers multiple advantages for influenza monitoring in (inter)national influenza surveillance, and proposes an improved methodology. This allows leveraging all information contained in influenza genomes, and allows for more accurate genetic characterization and reassortment detection.
-
-
-
Rapid and accurate SNP genotyping of clonal bacterial pathogens with BioHansel
Geneviève Labbé, Peter Kruczkiewicz, James Robertson, Philip Mabon, Justin Schonfeld, Daniel Kein, Marisa A. Rankin, Matthew Gopez, Darian Hole, David Son, Natalie Knox, Chad R. Laing, Kyrylo Bessonov, Eduardo N. Taboada, Catherine Yoshida, Kim Ziebell, Anil Nichani, Roger P. Johnson, Gary Van Domselaar and John H. E. NashHierarchical genotyping approaches can provide insights into the source, geography and temporal distribution of bacterial pathogens. Multiple hierarchical SNP genotyping schemes have previously been developed so that new isolates can rapidly be placed within pre-computed population structures, without the need to rebuild phylogenetic trees for the entire dataset. This classification approach has, however, seen limited uptake in routine public health settings due to analytical complexity and the lack of standardized tools that provide clear and easy ways to interpret results. The BioHansel tool was developed to provide an organism-agnostic tool for hierarchical SNP-based genotyping. The tool identifies split k-mers that distinguish predefined lineages in whole genome sequencing (WGS) data using SNP-based genotyping schemes. BioHansel uses the Aho-Corasick algorithm to type isolates from assembled genomes or raw read sequence data in a matter of seconds, with limited computational resources. This makes BioHansel ideal for use by public health agencies that rely on WGS methods for surveillance of bacterial pathogens. Genotyping results are evaluated using a quality assurance module which identifies problematic samples, such as low-quality or contaminated datasets. Using existing hierarchical SNP schemes for Mycobacterium tuberculosis and Salmonella Typhi, we compare the genotyping results obtained with the k-mer-based tools BioHansel and SKA, with those of the organism-specific tools TBProfiler and genotyphi, which use gold-standard reference-mapping approaches. We show that the genotyping results are fully concordant across these different methods, and that the k-mer-based tools are significantly faster. We also test the ability of the BioHansel quality assurance module to detect intra-lineage contamination and demonstrate that it is effective, even in populations with low genetic diversity. We demonstrate the scalability of the tool using a dataset of ~8100 S. Typhi public genomes and provide the aggregated results of geographical distributions as part of the tool’s output. BioHansel is an open source Python 3 application available on PyPI and Conda repositories and as a Galaxy tool from the public Galaxy Toolshed. In a public health context, BioHansel enables rapid and high-resolution classification of bacterial pathogens with low genetic diversity.
-
-
-
Different evolutionary trends form the twilight zone of the bacterial pan-genome
The pan-genome is defined as the combined set of all genes in the gene pool of a species. Pan-genome analyses have been very useful in helping to understand different evolutionary dynamics of bacterial species: an open pan-genome often indicates a free-living lifestyle with metabolic versatility, while closed pan-genomes are linked to host-restricted, ecologically specialized bacteria. A detailed understanding of the species pan-genome has also been instrumental in tracking the phylodynamics of emerging drug resistance mechanisms and drug-resistant pathogens. However, current approaches to analyse a species’ pan-genome do not take the species population structure into account, nor do they account for the uneven sampling of different lineages, as is commonplace due to over-sampling of clinically relevant representatives. Here we present the application of a population structure-aware approach for classifying genes in a pan-genome based on within-species distribution. We demonstrate our approach on a collection of 7500 Escherichia coli genomes, one of the most-studied bacterial species and used as a model for an open pan-genome. We reveal clearly distinct groups of genes, clustered by different underlying evolutionary dynamics, and provide a more biologically informed and accurate description of the species’ pan-genome.
-
- Functional Genomics and Microbe–Niche Interactions
-
-
A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction
Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results.
-
- Microbial Communities
-
-
Metagenomic evidence for a polymicrobial signature of sepsis
More LessOur understanding of the host component of sepsis has made significant progress. However, detailed study of the microorganisms causing sepsis, either as single pathogens or microbial assemblages, has received far less attention. Metagenomic data offer opportunities to characterize the microbial communities found in septic and healthy individuals. In this study we apply gradient-boosted tree classifiers and a novel computational decontamination technique built upon SHapley Additive exPlanations (SHAP) to identify microbial hallmarks which discriminate blood metagenomic samples of septic patients from that of healthy individuals. Classifiers had high performance when using the read assignments to microbial genera [area under the receiver operating characteristic (AUROC=0.995)], including after removal of species ‘culture-confirmed’ as the cause of sepsis through clinical testing (AUROC=0.915). Models trained on single genera were inferior to those employing a polymicrobial model and we identified multiple co-occurring bacterial genera absent from healthy controls. While prevailing diagnostic paradigms seek to identify single pathogens, our results point to the involvement of a polymicrobial community in sepsis. We demonstrate the importance of the microbial component in characterising sepsis, which may offer new biological insights into the aetiology of sepsis, and ultimately support the development of clinical diagnostic or even prognostic tools.
-
- Pathogens and Epidemiology
-
-
Genome-wide analysis provides a deeper understanding of the population structure of the Salmonella enterica serotype Paratyphi B complex in Bangladesh
The Salmonella enterica serotype Paratyphi B complex causes a wide range of diseases, from gastroenteritis to paratyphoid fever, depending on the biotypes Java and sensu stricto. The burden of Paratyphi B biotypes in Bangladesh is still unknown, as these are indistinguishable by Salmonella serotyping. Here, we conducted the first whole-genome sequencing (WGS) study on 79 Salmonella isolates serotyped as Paratyphi B that were collected from 10 nationwide enteric disease surveillance sites in Bangladesh. Placing these in a global genetic context revealed that these are biotype Java, and the addition of these genomes expanded the previously described PG4 clade containing Bangladeshi and UK isolates. Importantly, antimicrobial resistance (AMR) genes were scarce amongst Bangladeshi S. Java isolates, somewhat surprisingly given the widespread availability of antibiotics without prescription. This genomic information provides important insights into the significance of S. Paratyphi B biotypes in enteric disease and their implications for public health.
-
-
-
Mutations in the gdpP gene are a clinically relevant mechanism for β-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants
In Staphylococcus aureus , resistance to β-lactamase stable β-lactam antibiotics is mediated by the penicillinbinding protein 2a, encoded by mecA or by its homologues mecB or mecC. However, a substantial number of meticillin-resistant isolates lack known mec genes and, thus, are called meticillin resistant lacking mec (MRLM). This study aims to identify the genetic mechanisms underlying the MRLM phenotype. A total of 141 MRLM isolates and 142 meticillin-susceptible controls were included in this study. Oxacillin and cefoxitin minimum inhibitory concentrations were determined by broth microdilution and the presence of mec genes was excluded by PCR. Comparative genomics and a genome-wide association study (GWAS) approach were applied to identify genetic polymorphisms associated with the MRLM phenotype. The potential impact of such mutations on the expression of PBP4, as well as on cell morphology and biofilm formation, was investigated. GWAS revealed that mutations in gdpP were significantly associated with the MRLM phenotype. GdpP is a phosphodiesterase enzyme involved in the degradation of the second messenger cyclic-di-AMP in S. aureus . A total of 131 MRLM isolates carried truncations, insertions or deletions as well as amino acid substitutions, mainly located in the functional DHH-domain of GdpP. We experimentally verified the contribution of these gdpP mutations to the MRLM phenotype by heterologous complementation experiments. The mutations in gdpP had no effect on transcription levels of pbp4; however, cell sizes of MRLM strains were reduced. The impact on biofilm formation was highly strain dependent. We report mutations in gdpP as a clinically relevant mechanism for β-lactam resistance in MRLM isolates. This observation is of particular clinical relevance, since MRLM are easily misclassified as MSSA (meticillin-susceptible S. aureus ), which may lead to unnoticed spread of β-lactam-resistant isolates and subsequent treatment failure.
-
-
-
The rise and the fall of a Pseudomonas aeruginosa endemic lineage in a hospital
The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.
-
-
-
Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi
More LessPlant diseases caused by fungal pathogens are typically initiated by molecular interactions between ‘effector’ molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
-
-
-
Revisiting the heterogeneous global genomic population structure of Leishmania infantum
Leishmania infantum is the main causative agent responsible for visceral leishmaniasis (VL), a disease with global distribution. The genomic structure and genetic variation of this species have been widely studied in different parts of the world. However, in some countries, this information is still yet unknown, as is the genomic behaviour of the main antigens used in VL diagnosis (rK39 and rK28), which have demonstrated variable sensitivity and specificity in a manner dependent on the geographic region analysed. The objective of this study was to explore the genomic architecture and diversity of four Colombian L. infantum isolates obtained in this study and to compare these results with the genetic analysis of 183 L. infantum isolates from across the world (obtained from public databases), as well as to analyse the whole rK39 and rK28 antigen sequences in our dataset. The results showed that, at the global level, L. infantum has high genetic homogeneity and extensive aneuploidy. Furthermore, we demonstrated that there are distinct populations of L. infantum circulating in various countries throughout the globe and that populations of distant countries have close genomic relationships. Additionally, this study demonstrated the high genetic variability of the rK28 antigen worldwide. In conclusion, our study allowed us to (i) expand our knowledge of the genomic structure of global L. infantum; (ii) describe the intra-specific genomic variability of this species; and (iii) understand the genomic characteristics of the main antigens used in the diagnosis of VL. Additionally, this is the first study to report whole-genome sequences of Colombian L. infantum isolates.
-
-
-
Streptococcus pneumoniae genomic datasets from an Indian population describing pre-vaccine evolutionary epidemiology using a whole genome sequencing approach
Globally, India has a high burden of pneumococcal disease, and pneumococcal conjugate vaccine (PCV) has been rolled out in different phases across the country since May 2017 in the national infant immunization programme (NIP). To provide a baseline for assessing the impact of the vaccine on circulating pneumococci in India, genetic characterization of pneumococcal isolates detected prior to introduction of PCV would be helpful. Here we present a population genomic study of 480 Streptococcus pneumoniae isolates collected across India and from all age groups before vaccine introduction (2009–2017), including 294 isolates from pneumococcal disease and 186 collected through nasopharyngeal surveys. Population genetic structure, serotype and antimicrobial susceptibility profile were characterized and predicted from whole-genome sequencing data. Our findings revealed high levels of genetic diversity represented by 110 Global Pneumococcal Sequence Clusters (GPSCs) and 54 serotypes. Serotype 19F and GPSC1 (CC320) was the most common serotype and pneumococcal lineage, respectively. Coverage of PCV13 (Pfizer) and 10-valent Pneumosil (Serum Institute of India) serotypes in age groups of ≤2 and 3–5 years were 63–75 % and 60–69 %, respectively. Coverage of PPV23 (Merck) serotypes in age groups of ≥50 years was 62 % (98/158). Among the top five lineages causing disease, GPSC10 (CC230), which ranked second, is the only lineage that expressed both PCV13 (serotypes 3, 6A, 14, 19A and 19F) and non-PCV13 (7B, 13, 10A, 11A, 13, 15B/C, 22F, 24F) serotypes. It exhibited multidrug resistance and was the largest contributor (17 %, 18/103) of NVTs in the disease-causing population. Overall, 42 % (202/480) of isolates were penicillin-resistant (minimum inhibitory concentration ≥0.12 µg ml−1) and 45 % (217/480) were multidrug-resistant. Nine GPSCs (GPSC1, 6, 9, 10, 13, 16, 43, 91, 376) were penicillin-resistant and among them six were multidrug-resistant. Pneumococci expressing PCV13 serotypes had a higher prevalence of antibiotic resistance. Sequencing of pneumococcal genomes has significantly improved our understanding of the biology of these bacteria. This study, describing the pneumococcal disease and carriage epidemiology pre-PCV introduction, demonstrates that 60–75 % of pneumococcal serotypes in children ≤5 years are covered by PCV13 and Pneumosil. Vaccination against pneumococci is very likely to reduce antibiotic resistance. A multidrug-resistant pneumococcal lineage, GPSC10 (CC230), is a high-risk clone that could mediate serotype replacement.
-
-
-
Whole genome sequencing reveals great diversity of Vibrio spp in prawns at retail
More LessConsumption of prawns as a protein source has been on the rise worldwide with seafood identified as the predominant attributable source of human vibriosis. However, surveillance of non-cholera Vibrio is limited both in public health and in food. Using a population- and market share-weighted study design, 211 prawn samples were collected and cultured for Vibrio spp. Contamination was detected in 46 % of samples, and multiple diverse Vibrio isolates were obtained from 34 % of positive samples. Whole genome sequencing (WGS) and phylogenetic analysis illustrated a comprehensive view of Vibrio species diversity in prawns available at retail, with no known pathogenicity markers identified in Vibrio parahaemolyticus and V. cholerae . Antimicrobial resistance genes were found in 77 % of isolates, and 12 % carried genes conferring resistance to three or more drug classes. Resistance genes were found predominantly in V. parahaemolyticus , though multiple resistance genes were also identified in V. cholerae and V. vulnificus . This study highlights the large diversity in Vibrio derived from prawns at retail, even within a single sample. Although there was little evidence in this study that prawns are a major source of vibriosis in the UK, surveillance of non-cholera Vibrio is very limited. This study illustrates the value of expanding WGS surveillance efforts of non-cholera Vibrios in the food chain to identify critical control points for food safety through the production system and to determine the full extent of the public health impact.
-
-
-
The fall and rise of group B Streptococcus in dairy cattle: reintroduction due to human-to-cattle host jumps?
Group B Streptococcus (GBS; Streptococcus agalactiae ) is a major neonatal and opportunistic bacterial pathogen of humans and an important cause of mastitis in dairy cattle with significant impacts on food security. Following the introduction of mastitis control programmes in the 1950s, GBS was nearly eradicated from the dairy industry in northern Europe, followed by re-emergence in the 21st century. Here, we sought to explain this re-emergence based on short and long read sequencing of historical (1953–1978; n=44) and contemporary (1997–2012; n=76) bovine GBS isolates. Our data show that a globally distributed bovine-associated lineage of GBS was commonly detected among historical isolates but never among contemporary isolates. By contrast, tetracycline resistance, which is present in all major GBS clones adapted to humans, was commonly and uniquely detected in contemporary bovine isolates. These observations provide evidence for strain replacement and suggest a human origin of newly emerged strains. Three novel GBS plasmids were identified, including two showing >98 % sequence similarity with plasmids from Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis , which co-exist with GBS in the human oropharynx. Our findings support introduction of GBS into the dairy population due to human-to-cattle jumps on multiple occasions and demonstrate that reverse zoonotic transmission can erase successes of animal disease control campaigns.
-
- Evolution and Responses to Interventions
-
-
Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis
Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus , the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis , Streptococcus oralis and S. pneumoniae . With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis . Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced β-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis .
-
-
-
Population genetic structure, serotype distribution and antibiotic resistance of Streptococcus pneumoniae causing invasive disease in children in Argentina
Invasive disease caused by Streptococcus pneumoniae (IPD) is one of the leading causes of morbidity and mortality in young children worldwide. In Argentina, PCV13 was introduced into the childhood immunization programme nationwide in 2012 and PCV7 was available from 2000, but only in the private market. Since 1993 the National IPD Surveillance Programme, consisting of 150 hospitals, has conducted nationwide pneumococcal surveillance in Argentina in children under 6 years of age, as part of the SIREVA II-OPS network. A total of 1713 pneumococcal isolates characterized by serotype (Quellung) and antimicrobial resistance (agar dilution) to ten antibiotics, belonging to three study periods: pre-PCV7 era 1998–1999 (pre-PCV), before the introduction of PCV13 2010–2011 (PCV7) and after the introduction of PCV13 2012–2013 (PCV13), were available for inclusion. Fifty-four serotypes were identified in the entire collection and serotypes 14, 5 and 1 represented 50 % of the isolates. Resistance to penicillin was 34.9 %, cefotaxime 10.6 %, meropenem 4.9 %, cotrimoxazole 45 %, erythromycin 21.5 %, tetracycline 15.4 % and chloramphenicol 0.4 %. All the isolates were susceptible to levofloxacin, rifampin and vancomycin. Of 1713 isolates, 1061 (61.9 %) were non-susceptible to at least one antibiotic and 235(13.7 %) were multidrug resistant. A subset of 413 isolates was randomly selected and whole-genome sequenced as part of Global Pneumococcal Sequencing Project (GPS). The genome data was used to investigate the population structure of S. pneumoniae defining pneumococcal lineages using Global Pneumococcal Sequence Clusters (GPSCs), sequence types (STs) and clonal complexes (CCs), prevalent serotypes and their associated pneumococcal lineages and genomic inference of antimicrobial resistance. The collection showed a great diversity of strains. Among the 413 isolates, 73 known and 36 new STs were identified belonging to 38 CCs and 25 singletons, grouped into 52 GPSCs. Important changes were observed among vaccine types when pre-PCV and PCV13 periods were compared; a significant decrease in serotypes 14, 6B and 19F and a significant increase in 7F and 3. Among non-PCV13 types, serogroup 24 increased from 0 % in pre-PCV to 3.2 % in the PCV13 period. Our analysis showed that 66.1 % (273/413) of the isolates were predicted to be non-susceptible to at least one antibiotic and 11.9 % (49/413) were multidrug resistant. We found an agreement of 100 % when comparing the serotype determined by Quellung and WGS-based serotyping and 98.4 % of agreement in antimicrobial resistance. Continued surveillance of the pneumococcal population is needed to reveal the dynamics of pneumococcal isolates in Argentina in post-PCV13. This article contains data hosted by Microreact.
-
-
-
wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations
Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1–7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.
-
-
-
Comparative molecular evolution of chitinases in ascomycota with emphasis on mycoparasitism lifestyle
More LessChitinases are involved in multiple aspects of fungal life cycle, such as cell wall remodelling, chitin degradation and mycoparasitism lifestyle. To improve our knowledge of the chitinase molecular evolution of Ascomycota, the gene family of 72 representatives of this phylum was identified and subjected to phylogenetic, evolution trajectory and selective pressure analyses. Phylogenetic analysis showed that the chitinase gene family size and enzyme types varied significantly, along with species evolution, especially for groups B and C. In addition, two new subgroups, C3 and C4, are recognized in group C chitinases. Random birth and death testing indicated that gene expansion and contraction occurred in most of the taxa, particularly for species in the order Hypocreales (class Sordariomycetes). From an enzyme function point of view, we speculate that group A chitinases are mainly involved in species growth and development, while the expansion of genes in group B chitinases is related to fungal mycoparasitic and entomopathogenic abilities, and, to a certain extent, the expansion of genes in group C chitinases seems to be correlated with the host range broadening of some plant-pathogenic fungi in Sordariomycetes. Further selection pressure testing revealed that chitinases and the related amino acid sites were under positive selection in the evolutionary history, especially at the nodes sharing common ancestors and the terminal branches of Hypocreales. These results give a reasonable explanation for the size and function differences of chitinase genes among ascomycetes, and provide a scientific basis for understanding the evolutionary trajectories of chitinases, particularly that towards a mycoparasitic lifestyle.
-
-
-
Lipopolysaccharide core type diversity in the Escherichia coli species in association with phylogeny, virulence gene repertoire and distribution of type VI secretion systems
More LessEscherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli , is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.
-
- Short Communications
-
- Genomic Methodologies
-
-
Flanker: a tool for comparative genomics of gene flanking regions
Analysing the flanking sequences surrounding genes of interest is often highly relevant to understanding the role of mobile genetic elements (MGEs) in horizontal gene transfer, particular for antimicrobial-resistance genes. Here, we present Flanker, a Python package that performs alignment-free clustering of gene flanking sequences in a consistent format, allowing investigation of MGEs without prior knowledge of their structure. These clusters, known as ‘flank patterns’ (FPs), are based on Mash distances, allowing for easy comparison of similarity across sequences. Additionally, Flanker can be flexibly parameterized to fine-tune outputs by characterizing upstream and downstream regions separately, and investigating variable lengths of flanking sequence. We apply Flanker to two recent datasets describing plasmid-associated carriage of important carbapenemase genes (bla OXA-48 and bla KPC-2/3) and show that it successfully identifies distinct clusters of FPs, including both known and previously uncharacterized structural variants. For example, Flanker identified four Tn4401 profiles that could not be sufficiently characterized using TETyper or MobileElementFinder, demonstrating the utility of Flanker for flanking-gene characterization. Similarly, using a large (n=226) European isolate dataset, we confirm findings from a previous smaller study demonstrating association between Tn1999.2 and bla OXA-48 upregulation and demonstrate 17 FPs (compared to the 5 previously identified). More generally, the demonstration in this study that FPs are associated with geographical regions and antibiotic-susceptibility phenotypes suggests that they may be useful as epidemiological markers. Flanker is freely available under an MIT license at https://github.com/wtmatlock/flanker.
-
Most Read This Month
