- Volume 7, Issue 12, 2021
Volume 7, Issue 12, 2021
- Research Articles
-
- Pathogens and Epidemiology
-
-
Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage
More LessCryptosporidium spp. are important enteric pathogens in a wide range of vertebrates including humans. Previous comparative analysis revealed conservation in genome composition, gene content, and gene organization among Cryptosporidium spp., with a progressive reductive evolution in metabolic pathways and invasion-related proteins. In this study, we sequenced the genome of zoonotic pathogen Cryptosporidium felis and conducted a comparative genomic analysis. While most intestinal Cryptosporidium species have similar genomic characteristics and almost complete genome synteny, fewer protein-coding genes and some sequence inversions and translocations were found in the C. felis genome. The C. felis genome exhibits much higher GC content (39.6 %) than other Cryptosporidium species (24.3–32.9 %), especially at the third codon position (GC3) of protein-coding genes. Thus, C. felis has a different codon usage, which increases the use of less energy costly amino acids (Gly and Ala) encoded by GC-rich codons. While the tRNA usage is conserved among Cryptosporidium species, consistent with its higher GC content, C. felis uses a unique tRNA for GTG for valine instead of GTA in other Cryptosporidium species. Both mutational pressures and natural selection are associated with the evolution of the codon usage in Cryptosporidium spp., while natural selection seems to drive the codon usage in C. felis. Other unique features of the C. felis genome include the loss of the entire traditional and alternative electron transport systems and several invasion-related proteins. Thus, the preference for the use of some less energy costly amino acids in C. felis may lead to a more harmonious parasite–host interaction, and the strengthened host-adaptation is reflected by the further reductive evolution of metabolism and host invasion-related proteins.
-
-
-
The global population structure and evolutionary history of the acquisition of major virulence factor-encoding genetic elements in Shiga toxin-producing Escherichia coli O121:H19
Ruriko Nishida, Keiji Nakamura, Itsuki Taniguchi, Kazunori Murase, Tadasuke Ooka, Yoshitoshi Ogura, Yasuhiro Gotoh, Takehiko Itoh, Atsushi Toyoda, Jacques Georges Mainil, Denis Piérard, Kazuko Seto, Tetsuya Harada, Junko Isobe, Keiko Kimata, Yoshiki Etoh, Mitsuhiro Hamasaki, Hiroshi Narimatsu, Jun Yatsuyanagi, Mitsuhiro Kameyama, Yuko Matsumoto, Yuhki Nagai, Jun Kawase, Eiji Yokoyama, Kazuhiko Ishikawa, Takayuki Shiomoto, Kenichi Lee, Dongchon Kang, Koichi Akashi, Makoto Ohnishi, Sunao Iyoda and Tetsuya HayashiShiga toxin (Stx)-producing Escherichia coli (STEC) are foodborne pathogens causing serious diseases, such as haemorrhagic colitis and haemolytic uraemic syndrome. Although O157:H7 STEC strains have been the most prevalent, incidences of STEC infections by several other serotypes have recently increased. O121:H19 STEC is one of these major non-O157 STECs, but systematic whole genome sequence (WGS) analyses have not yet been conducted on this STEC. Here, we performed a global WGS analysis of 638 O121:H19 strains, including 143 sequenced in this study, and a detailed comparison of 11 complete genomes, including four obtained in this study. By serotype-wide WGS analysis, we found that O121:H19 strains were divided into four lineages, including major and second major lineages (named L1 and L3, respectively), and that the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS) was acquired by the common ancestor of O121:H19. Analyses of 11 complete genomes belonging to L1 or L3 revealed remarkable interlineage differences in the prophage pool and prophage-encoded T3SS effector repertoire, independent acquisition of virulence plasmids by the two lineages, and high conservation in the prophage repertoire, including that for Stx2a phages in lineage L1. Further sequence determination of complete Stx2a phage genomes of 49 strains confirmed that Stx2a phages in lineage L1 are highly conserved short-tailed phages, while those in lineage L3 are long-tailed lambda-like phages with notable genomic diversity, suggesting that an Stx2a phage was acquired by the common ancestor of L1 and has been stably maintained. Consistent with these genomic features of Stx2a phages, most lineage L1 strains produced much higher levels of Stx2a than lineage L3 strains. Altogether, this study provides a global phylogenetic overview of O121:H19 STEC and shows the interlineage genomic differences and the highly conserved genomic features of the major lineage within this serotype of STEC.
-
-
-
Characterization of the mitochondrial genomes of three powdery mildew pathogens reveals remarkable variation in size and nucleotide composition
More LessPowdery mildews comprise a large group of economically important phytopathogenic fungi. However, limited information exists on their mitochondrial genomes. Here, we assembled and compared the mitochondrial genomes of the powdery mildew pathogens Blumeria graminis f. sp. tritici, Erysiphe pisi, and Golovinomyces cichoracearum. Included in the comparative analysis was also the mitochondrial genome of Erysiphe necator that was previously analysed. The mitochondrial genomes of the four Erysiphales exhibit a similar gene content and organization but a large variation in size, with sizes ranging from 109800 bp in B. graminis f. sp. tritici to 332165 bp in G. cichoracearum, which is the largest mitochondrial genome of a fungal pathogen reported to date. Further comparative analysis revealed an unusual bimodal GC distribution in the mitochondrial genomes of B. graminis f. sp. tritici and G. cichoracearum that was not previously observed in fungi. The cytochrome b (cob) genes of E. necator, E. pisi, and G. cichoracearum were also exceptionally rich in introns, which in turn harboured rare open reading frames encoding reverse transcriptases that were likely acquired horizontally. Golovinomyces cichoracearum had also the longest cob gene (45 kb) among 703 fungal cob genes analysed. Collectively, these results provide novel insights into the organization of mitochondrial genomes of powdery mildew pathogens and represent valuable resources for population genetics and evolutionary studies.
-
-
-
Genomic comparisons of Escherichia coli ST131 from Australia
Dmitriy Li, Ethan R. Wyrsch, Paarthiphan Elankumaran, Monika Dolejska, Marc S. Marenda, Glenn F. Browning, Rhys N. Bushell, Jessica McKinnon, Piklu Roy Chowdhury, Nola Hitchick, Natalie Miller, Erica Donner, Barbara Drigo, Dave Baker, Ian G. Charles, Timothy Kudinha, Veronica M. Jarocki and Steven Philip DjordjevicEscherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron–integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462–1014 bp), highlighting the ongoing evolution of this element. The module intI1–dfrA17–aadA5–qacEΔ1–sul1–ORF–chrA–padR–IS1600–mphR–mrx–mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically bla CTX-M-15 and bla CTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.
-
-
-
Epidemiology and population structure of Haemophilus influenzae causing invasive disease
This study provides an update on invasive Haemophilus influenzae disease in Bellvitge University Hospital (2014–2019), reporting its evolution from a previous period (2008–2013) and analysing the non-typeable H. influenzae (NTHi) population structure using a clade-related classification. Clinical data, antimicrobial susceptibility and serotyping were studied and compared with those of the previous period. Population structure was assessed by multilocus sequence typing (MLST), SNP-based phylogenetic analysis and clade-related classification. The incidence of invasive H. influenzae disease remained constant between the two periods (average 2.07 cases per 100 000 population), while the 30 day mortality rate decreased (20.7–14.7 %, respectively). Immunosuppressive therapy (40 %) and malignancy (36 %) were the most frequent comorbidities. Ampicillin and fluoroquinolone resistance rates had increased between the two periods (10–17.6 % and 0–4.4 %, respectively). NTHi was the main cause of invasive disease in both periods (84.3 and 85.3 %), followed by serotype f (12.9 and 8.8 %). NTHi displayed high genetic diversity. However, two clusters of 13 (n=20) and 5 sequence types (STs) (n=10) associated with clade V included NTHi strains of the most prevalent STs (ST3 and ST103), many of which showed increased frequency over time. Moreover, ST103 and ST160 from clade V were associated with β-lactam resistance. Invasive H. influenzae disease is uncommon, but can be severe, especially in the elderly with comorbidities. NTHi remains the main cause of invasive disease, with ST103 and ST160 (clade V) responsible for increasing β-lactam resistance over time.
-
-
-
Genomic diversity of antimicrobial resistance in non-typhoidal Salmonella in Victoria, Australia
Non-typhoidal Salmonella (NTS) is the second most common cause of foodborne bacterial gastroenteritis in Australia with antimicrobial resistance (AMR) increasing in recent years. Whole-genome sequencing (WGS) provides opportunities for in silico detection of AMR determinants. The objectives of this study were two-fold: (1) establish the utility of WGS analyses for inferring phenotypic resistance in NTS, and (2) explore clinically relevant genotypic AMR profiles to third generation cephalosporins (3GC) in NTS lineages. The concordance of 2490 NTS isolates with matched WGS and phenotypic susceptibility data against 13 clinically relevant antimicrobials was explored. In silico serovar prediction and typing was performed on assembled reads and interrogated for known AMR determinants. The surrounding genomic context, plasmid determinants and co-occurring AMR patterns were further investigated for multidrug resistant serovars harbouring bla CMY-2, bla CTX-M-55 or bla CTX-M-65. Our data demonstrated a high correlation between WGS and phenotypic susceptibility testing. Phenotypic-genotypic concordance was observed between 2440/2490 (98.0 %) isolates, with overall sensitivity and specificity rates >98 % and positive and negative predictive values >97 %. The most common AMR determinants were bla TEM-1, sul2, tet(A), strA-strB and floR. Phenotypic resistance to cefotaxime and azithromycin was low and observed in 6.2 % (151/2486) and 0.9 % (16/1834) of the isolates, respectively. Several multi-drug resistant NTS lineages were resistant to 3GC due to different genetic mechanisms including bla CMY-2, bla CTX-M-55 or bla CTX-M-65. This study shows WGS can enhance existing AMR surveillance in NTS datasets routinely produced in public health laboratories to identify emerging AMR in NTS. These approaches will be critical for developing capacity to detect emerging public health threats such as resistance to 3GC.
-
-
-
Prophages encoding human immune evasion cluster genes are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients with nasal polyps
Prophages affect bacterial fitness on multiple levels. These include bacterial infectivity, toxin secretion, virulence regulation, surface modification, immune stimulation and evasion and microbiome competition. Lysogenic conversion arms bacteria with novel accessory functions thereby increasing bacterial fitness, host adaptation and persistence, and antibiotic resistance. These properties allow the bacteria to occupy a niche long term and can contribute to chronic infections and inflammation such as chronic rhinosinusitis (CRS). In this study, we aimed to identify and characterize prophages present in Staphylococcus aureus from patients suffering from CRS in relation to CRS disease phenotype and severity. Prophage regions were identified using PHASTER. Various in silico tools like ResFinder and VF Analyzer were used to detect virulence genes and antibiotic resistance genes respectively. Progressive MAUVE and maximum likelihood were used for multiple sequence alignment and phylogenetics of prophages respectively. Disease severity of CRS patients was measured using computed tomography Lund–Mackay scores. Fifty-eight S. aureus clinical isolates (CIs) were obtained from 28 CRS patients without nasal polyp (CRSsNP) and 30 CRS patients with nasal polyp (CRSwNP). All CIs carried at least one prophage (average=3.6) and prophages contributed up to 7.7 % of the bacterial genome. Phage integrase genes were found in 55/58 (~95 %) S. aureus strains and 97/211 (~46 %) prophages. Prophages belonging to Sa3int integrase group (phiNM3, JS01, phiN315) (39/97, 40%) and Sa2int (phi2958PVL) (14/97, 14%) were the most prevalent prophages and harboured multiple virulence genes such as sak, scn, chp, lukE/D, sea. Intact prophages were more frequently identified in CRSwNP than in CRSsNP (P=0.0021). Intact prophages belonging to the Sa3int group were more frequent in CRSwNP than in CRSsNP (P=0.0008) and intact phiNM3 were exclusively found in CRSwNP patients (P=0.007). Our results expand the knowledge of prophages in S. aureus isolated from CRS patients and their possible role in disease development. These findings provide a platform for future investigations into potential tripartite associations between bacteria-prophage-human immune system, S. aureus evolution and CRS disease pathophysiology.
-
-
-
Genetic differentiation of Xylella fastidiosa following the introduction into Taiwan
The economically important plant pathogen Xylella fastidiosa has been reported in multiple regions of the globe during the last two decades, threatening a growing list of plants. Particularly, X. fastidiosa subspecies fastidiosa causes Pierce’s disease (PD) of grapevines, which is a problem in the USA, Spain, and Taiwan. In this work, we studied PD-causing subsp. fastidiosa populations and compared the genome sequences of 33 isolates found in Central Taiwan with 171 isolates from the USA and two from Spain. Phylogenetic relationships, haplotype networks, and genetic diversity analyses confirmed that subsp. fastidiosa was recently introduced into Taiwan from the Southeast USA (i.e. the PD-I lineage). Recent core-genome recombination events were detected among introduced subsp. fastidiosa isolates in Taiwan and contributed to the development of genetic diversity. The genetic diversity observed includes contributions through recombination from unknown donors, suggesting that higher genetic diversity exists in the region. Nevertheless, no recombination event was detected between X. fastidiosa subsp. fastidiosa and the endemic sister species Xylella taiwanensis , which is the causative agent of pear leaf scorch disease. In summary, this study improved our understanding of the genetic diversity of an important plant pathogenic bacterium after its invasion to a new region.
-
-
-
ECTyper: in silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data
Escherichia coli is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical information for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order to minimize disruptions to existing public health workflows. Multiple in silico tools have been developed for predicting serotypes from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific requirements of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and easily interpretable results. To address these specific requirements, we developed ECTyper (https://github.com/phac-nml/ecoli_serotyping) for performing both speciation within Escherichia and Shigella , and in silico serotype prediction. We compared the serotype prediction performance of each tool on a newly sequenced panel of 185 isolates with confirmed phenotypic serotype information. We found that all tools were highly concordant, with 92–97 % for O-antigens and 98–100 % for H-antigens, and ECTyper having the highest rate of concordance. We extended the benchmarking to a large panel of 6954 publicly available E. coli genomes to assess the performance of the tools on a more diverse dataset. On the public data, there was a considerable drop in concordance, with 75–91 % for O-antigens and 62–90 % for H-antigens, and ECTyper and SerotypeFinder being the most concordant. This study highlights that in silico predictions show high concordance with phenotypic serotyping results, but there are notable differences in tool performance. ECTyper provides highly accurate and sensitive in silico serotype predictions, in addition to speciation, and is designed to be easily incorporated into bioinformatic workflows.
-
-
-
SARS-CoV-2 genetic variations associated with COVID-19 pathogenicity
In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined conclusively as either ‘pre-symptomatic/asymptomatic’ or ‘symptomatic’ were retrieved from the GISAID database. We found that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asymptomatic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.
-
-
-
Introduction and adaptation of an emerging pathogen to olive trees in Italy
The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X . fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930–2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.
-
-
-
The evolutionary history of Shigella flexneri serotype 6 in Asia
Shigella flexneri serotype 6 is an understudied cause of diarrhoeal diseases in developing countries, and has been proposed as one of the major targets for vaccine development against shigellosis. Despite being named as S. flexneri , Shigella flexneri serotype 6 is phylogenetically distinct from other S. flexneri serotypes and more closely related to S. boydii . This unique phylogenetic relationship and its low sampling frequency have hampered genomic research on this pathogen. Herein, by utilizing whole genome sequencing (WGS) and analyses of Shigella flexneri serotype 6 collected from epidemiological studies (1987–2013) in four Asian countries, we revealed its population structure and evolutionary history in the region. Phylogenetic analyses supported the delineation of Asian Shigella flexneri serotype 6 into two phylogenetic groups (PG-1 and −2). Notably, temporal phylogenetic approaches showed that extant Asian S. flexneri serotype 6 could be traced back to an inferred common ancestor arising in the 18th century. The dominant lineage PG-1 likely emerged in the 1970s, which coincided with the times to most recent common ancestors (tMRCAs) inferred from other major Southeast Asian S. flexneri serotypes. Similar to other S. flexneri serotypes in the same period in Asia, genomic analyses showed that resistance to first-generation antimicrobials was widespread, while resistance to more recent first-line antimicrobials was rare. These data also showed a number of gene inactivation and gene loss events, particularly on genes related to metabolism and synthesis of cellular appendages, emphasizing the continuing role of reductive evolution in the adaptation of the pathogen to an intracellular lifestyle. Together, our findings reveal insights into the genomic evolution of the understudied Shigella flexneri serotype 6, providing a new piece in the puzzle of Shigella epidemiology and evolution.
-
-
-
Clostridioides difficile strain-dependent and strain-independent adaptations to a microaerobic environment
More LessClostridioides difficile (formerly Clostridium difficile ) colonizes the gastrointestinal tract following disruption of the microbiota and can initiate a spectrum of clinical manifestations ranging from asymptomatic to life-threatening colitis. Following antibiotic treatment, luminal oxygen concentrations increase, exposing gut microbes to potentially toxic reactive oxygen species. Though typically regarded as a strict anaerobe, C. difficile can grow at low oxygen concentrations. How this bacterium adapts to a microaerobic environment and whether those responses to oxygen are conserved amongst strains is not entirely understood. Here, two C. difficile strains (630 and CD196) were cultured in 1.5% oxygen and the transcriptional response to long-term oxygen exposure was evaluated via RNA-sequencing. During growth in a microaerobic environment, several genes predicted to protect against oxidative stress were upregulated, including those for rubrerythrins and rubredoxins. Transcription of genes involved in metal homeostasis was also positively correlated with increased oxygen levels and these genes were amongst the most differentially transcribed. To directly compare the transcriptional landscape between C. difficile strains, a ‘consensus-genome’ was generated. On the basis of the identified conserved genes, basal transcriptional differences as well as variations in the response to oxygen were evaluated. While several responses were similar between the strains, there were significant differences in the abundance of transcripts involved in amino acid and carbohydrate metabolism. Furthermore, intracellular metal concentrations significantly varied both in an oxygen-dependent and oxygen-independent manner. Overall, these results indicate that C. difficile adapts to grow in a low oxygen environment through transcriptional changes, though the specific strategy employed varies between strains.
-
-
-
Context-aware genomic surveillance reveals hidden transmission of a carbapenemase-producing Klebsiella pneumoniae
Genomic surveillance can inform effective public health responses to pathogen outbreaks. However, integration of non-local data is rarely done. We investigate two large hospital outbreaks of a carbapenemase-carrying Klebsiella pneumoniae strain in Germany and show the value of contextual data. By screening about 10 000 genomes, over 400 000 metagenomes and two culture collections using in silico and in vitro methods, we identify a total of 415 closely related genomes reported in 28 studies. We identify the relationship between the two outbreaks through time-dated phylogeny, including their respective origin. One of the outbreaks presents extensive hidden transmission, with descendant isolates only identified in other studies. We then leverage the genome collection from this meta-analysis to identify genes under positive selection. We thereby identify an inner membrane transporter (ynjC) with a putative role in colistin resistance. Contextual data from other sources can thus enhance local genomic surveillance at multiple levels and should be integrated by default when available.
-
-
-
Genome placement of alpha-haemolysin cluster is associated with alpha-haemolysin sequence variation, adhesin and iron acquisition factor profile of Escherichia coli
Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli . Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.
-
- Short Communications
-
- Pathogens and Epidemiology
-
-
Whole genome sequencing reveals large deletions and other loss of function mutations in Mycobacterium tuberculosis drug resistance genes
More LessDrug resistance in Mycobacterium tuberculosis , the causative agent of tuberculosis disease, arises from genetic mutations in genes coding for drug-targets or drug-converting enzymes. SNPs linked to drug resistance have been extensively studied and form the basis of molecular diagnostics and sequencing-based resistance profiling. However, alternative forms of functional variation such as large deletions and other loss of function (LOF) mutations have received much less attention, but if incorporated into diagnostics they are likely to improve their predictive performance. Our work aimed to characterize the contribution of LOF mutations found in 42 established drug resistance genes linked to 19 anti-tuberculous drugs across 32689 sequenced clinical isolates. The analysed LOF mutations included large deletions (n=586), frameshifts (n=4764) and premature stop codons (n=826). We found LOF mutations in genes strongly linked to pyrazinamide (pncA), isoniazid (katG), capreomycin (tlyA), streptomycin (e.g. gid) and ethionamide (ethA, mshA) (P<10−5), but also in some loci linked to drugs where relatively less phenotypic data is available [e.g. cycloserine, delaminid, bedaquiline, para-aminosalicylic acid (PAS), and clofazimine]. This study reports that large deletions (median size 1115 bp) account for a significant portion of resistance variants found for PAS (+7.1% of phenotypic resistance percentage explained), pyrazinamide (+3.5%) and streptomycin (+2.6%) drugs, and can be used to improve the prediction of cryptic resistance. Overall, our work highlights the importance of including LOF mutations (e.g. large deletions) in predicting genotypic drug resistance, thereby informing tuberculosis infection control and clinical decision-making.
-
-
-
Genomic insights into the circulation of pandemic fluoroquinolone-resistant extra-intestinal pathogenic Escherichia coli ST1193 in Vietnam
Extra-intestinal pathogenic Escherichia coli (ExPEC) ST1193, a globally emergent fluoroquinolone-resistant clone, has become an important cause of bloodstream infections (BSIs) associated with significant morbidity and mortality. Previous studies have reported the emergence of fluoroquinolone-resistant ExPEC ST1193 in Vietnam; however, limited data exist regarding the genetic structure, antimicrobial resistance (AMR) determinants and transmission dynamics of this pandemic clone. Here, we performed genomic and phylogenetic analyses of 46 ST1193 isolates obtained from BSIs and healthy individuals in Ho Chi Minh City, Vietnam, to investigate the pathogen population structure, molecular mechanisms of AMR and potential transmission patterns. We further examined the phylogenetic structure of ST1193 isolates in a global context. We found that the endemic E. coli ST1193 population was heterogeneous and highly dynamic, largely driven by multiple strain importations. Several well-supported phylogenetic clusters (C1–C6) were identified and associated with distinct bla CTX-M variants, including bla CTXM-27 (C1–C3, C5), bla CTXM-55 (C4) and bla CTXM-15 (C6). Most ST1193 isolates were multidrug-resistant and carried an extensive array of AMR genes. ST1193 isolates also exhibited the ability to acquire further resistance while circulating in Vietnam. There were phylogenetic links between ST1193 isolates from BSIs and healthy individuals, suggesting these organisms may both establish long-term colonization in the human intestinal tract and induce infections. Our study uncovers factors shaping the population structure and transmission dynamics of multidrug-resistant ST1193 in Vietnam, and highlights the urgent need for local One Health genomic surveillance to capture new emerging ExPEC clones and to better understand the origins and transmission patterns of these pathogens.
-
- Methods
-
- Genomic Methodologies
-
-
GBS-SBG - GBS Serotyping by Genome Sequencing
More LessGroup B Streptococcus (GBS; Streptococcus agalactiae ) is the most common cause of neonatal meningitis and a rising cause of sepsis in adults. Recently, it has also been shown to cause foodborne disease. As with many other bacteria, the polysaccharide capsule of GBS is antigenic, enabling its use for strain serotyping. Recent advances in DNA sequencing have made sequence-based typing attractive (as has been implemented for several other bacteria, including Escherichia coli , Klebsiella pneumoniae species complex, Streptococcus pyogenes , and others). For GBS, existing WGS-based serotyping systems do not provide complete coverage of all known GBS serotypes (specifically including subtypes of serotype III), and none are simultaneously compatible with the two most common data types, raw short reads and assembled sequences. Here, we create a serotyping database (GBS-SBG, GBS Serotyping by Genome Sequencing), with associated scripts and running instructions, that can be used to call all currently described GBS serotypes, including subtypes of serotype III, using both direct short-read- and assembly-based typing. We achieved higher concordance using GBS-SBG on a previously reported data set of 790 strains. We further validated GBS-SBG on a new set of 572 strains, achieving 99.8% concordance with PCR-based molecular serotyping using either short-read- or assembly-based typing. The GBS-SBG package is publicly available and will hopefully accelerate and simplify serotyping by sequencing for GBS.
-