-
Volume 6,
Issue 12,
2020
Volume 6, Issue 12, 2020
- Outbreak Report
-
- Microbial Evolution and Epidemiology
- Communicable Disease Genomics
-
-
Genomic epidemiology of nontoxigenic Corynebacterium diphtheriae from King County, Washington State, USA between July 2018 and May 2019
Between July 2018 and May 2019, Corynebacterium diphtheriae was isolated from eight patients with non-respiratory infections, seven of whom experienced homelessness and had stayed at shelters in King County, WA, USA. All isolates were microbiologically identified as nontoxigenic C. diphtheriae biovar mitis. Whole-genome sequencing confirmed that all case isolates were genetically related, associated with sequence type 445 and differing by fewer than 24 single-nucleotide polymorphisms (SNPs). Compared to publicly available C. diphtheriae genomic data, these WA isolates formed a discrete cluster with SNP variation consistent with previously reported outbreaks. Virulence-related gene content variation within the highly related WA cluster isolates was also observed. These results indicated that genome characterization can readily support epidemiology of nontoxigenic C. diphtheriae .
-
- BioResource
-
- Microbial Evolution and Epidemiology
- Communicable Disease Genomics
-
-
Complete microbial genomes for public health in Australia and the Southwest Pacific
Sarah L. Baines, Anders Gonçalves da Silva, Glen P. Carter, Amy Jennison, Irani Rathnayake, Rikki M. Graham, Vitali Sintchenko, Qinning Wang, Rebecca J. Rockett, Verlaine J. Timms, Elena Martinez, Susan Ballard, Takehiro Tomita, Nicole Isles, Kristy A. Horan, William Pitchers, Timothy P. Stinear, Deborah A. Williamson, Benjamin P. Howden, Torsten Seemann and Communicable Diseases Genomics Network (CDGN)Complete genomes of microbial pathogens are essential for the phylogenomic analyses that increasingly underpin core public health laboratory activities. Here, we announce a BioProject (PRJNA556438) dedicated to sharing complete genomes chosen to represent a range of pathogenic bacteria with regional importance to Australia and the Southwest Pacific; enriching the catalogue of globally available complete genomes for public health while providing valuable strains to regional public health microbiology laboratories. In this first step, we present 26 complete high-quality bacterial genomes. Additionally, we describe here a framework for reconstructing complete microbial genomes and highlight some of the challenges and considerations for accurate and reproducible genome reconstruction.
-
- Research Article
-
- Microbial Evolution and Epidemiology
- Population Genomics
-
-
Co-existence of multiple distinct lineages in Vibrio parahaemolyticus serotype O4:K12
Vibrio parahaemolyticus is an important cause of foodborne gastroenteritis globally. Thermostable direct haemolysin (TDH) and the TDH-related haemolysin are the two key virulence factors in V. parahaemolyticus. Vibrio pathogenicity islands harbour the genes encoding these two haemolysins. The serotyping of V. parahaemolyticus is based on the combination of O and K antigens. Frequent recombination has been observed in V. parahaemolyticus , including in the genomic regions encoding the O and K antigens. V. parahaemolyticus serotype O4:K12 has caused gastroenteritis outbreaks in the USA and Spain. Recently, outbreaks caused by this serotype of V. parahaemolyticus have been reported in China. However, the relationships among this serotype of V. parahaemolyticus strains isolated in different regions have not been addressed. Here, we investigated the genome variation of the V. parahaemolyticus serotype O4:K12 using the whole-genome sequences of 29 isolates. We determined five distinct lineages in this strain collection. We observed frequent recombination among different lineages. In contrast, little recombination was observed within each individual lineage. We showed that the lineage of this serotype of V. parahaemolyticus isolated in America was different from those isolated in Asia and identified genes that exclusively existed in the strains isolated in America. Pan-genome analysis showed that strain-specific and cluster-specific genes were mostly located in the genomic islands. Pan-genome analysis also showed that the vast majority of the accessory genes in the O4:K12 serotype of V. parahaemolyticus were acquired from within the genus Vibrio . Hence, we have shown that multiple distinct lineages exist in V. parahaemolyticus serotype O4:K12 and have provided more evidence about the gene segregation found in V. parahaemolyticus isolated in different continents.
-
-
-
Genetic diversity of clinical and environmental Mucorales isolates obtained from an investigation of mucormycosis cases among solid organ transplant recipients
Mucormycoses are invasive infections by Rhizopus species and other Mucorales. Over 10 months, four solid organ transplant (SOT) recipients at our centre developed mucormycosis due to Rhizopus microsporus (n=2), R. arrhizus (n=1) or Lichtheimia corymbifera (n=1), at a median 31.5 days (range: 13–34) post-admission. We performed whole genome sequencing (WGS) on 72 Mucorales isolates (45 R. arrhizus, 19 R. delemar, six R. microsporus, two Lichtheimia species) from these patients, from five patients with community-acquired mucormycosis, and from hospital and regional environments. Isolates were compared by core protein phylogeny and global genomic features, including genome size, guanine–cytosine percentages, shared protein families and paralogue expansions. Patient isolates fell into six core phylogenetic lineages (clades). Phylogenetic and genomic similarities of R. microsporus isolates recovered 7 months apart from two SOT recipients in adjoining hospitals suggested a potential common source exposure. However, isolates from other patients and environmental sites had unique genomes. Many isolates that were indistinguishable by core phylogeny were distinct by one or more global genomic comparisons. Certain clades were recovered throughout the study period, whereas others were found at particular time points. In conclusion, mucormycosis cases could not be genetically linked to a definitive environmental source. Comprehensive genomic analyses eliminated false associations between Mucorales isolates that would have been assigned using core phylogenetic or less extensive genomic comparisons. The genomic diversity of Mucorales mandates that multiple isolates from individual patients and environmental sites undergo WGS during epidemiological investigations. However, exhaustive surveillance of fungal populations in a hospital and surrounding community is probably infeasible.
-
-
-
Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections
More LessUrinary tract infections (UTIs) are the most common bacterial infections requiring medical attention and a leading justification for antibiotic prescription. Trimethoprim is prescribed empirically for uncomplicated cases. UTIs are primarily caused by extraintestinal pathogenic Escherichia coli (ExPEC) and ExPEC strains play a central role in disseminating antimicrobial-resistance genes worldwide. Here, we describe the whole-genome sequences of trimethoprim-resistant ExPEC and/or ExPEC from recurrent UTIs (67 in total) from patients attending a regional Australian hospital from 2006 to 2008. Twenty-three sequence types (STs) were observed, with ST131 predominating (28 %), then ST69 and ST73 (both 7 %). Co-occurrence of trimethoprim-resistance genes with genes conferring resistance to extended-spectrum β-lactams, heavy metals and quaternary ammonium ions was a feature of the ExPEC described here. Seven trimethoprim-resistance genes were identified, most commonly dfrA17 (38 %) and dfrA12 (18 %). An uncommon dfrB4 variant was also observed. Two blaCTX-M variants were identified – blaCTX-M-15 (16 %) and blaCTX-M-14 (10 %). The former was always associated with dfrA12, the latter with dfrA17, and all blaCTX-M genes co-occurred with chromate-resistance gene chrA. Eighteen class 1 integron structures were characterized, and chrA featured in eight structures; dfrA genes featured in seventeen. ST131 H30Rx isolates possessed distinct antimicrobial gene profiles comprising aac(3)-IIa, aac(6)-Ib-cr, aph(3′)-Ia, aadA2, blaCTX-M-15 , blaOXA-1 and dfrA12. The most common virulence-associated genes (VAGs) were fimH, fyuA, irp2 and sitA (all 91 %). Virulence profile clustering showed ST131 H30 isolates carried similar VAGs to ST73, ST405, ST550 and ST1193 isolates. The sole ST131 H27 isolate carried molecular predictors of enteroaggregative E. coli /ExPEC hybrid strains (aatA, aggR, fyuA). Seven isolates (10 %) carried VAGs suggesting ColV plasmid carriage. Finally, SNP analysis of serial UTI patients experiencing worsening sequelae demonstrated a high proportion of point mutations in virulence factors.
-
-
-
Epigenomics, genomics, resistome, mobilome, virulome and evolutionary phylogenomics of carbapenem-resistant Klebsiella pneumoniae clinical strains
More LessCarbapenem-resistant Klebsiella pneumoniae (CRKP) remains a major clinical pathogen and public health threat with few therapeutic options. The mobilome, resistome, methylome, virulome and phylogeography of CRKP in South Africa and globally were characterized. CRKP collected in 2018 were subjected to antimicrobial susceptibility testing, screening by multiplex PCR, genotyping by repetitive element palindromic (REP)-PCR, plasmid size, number, incompatibility and mobility analyses, and PacBio’s SMRT sequencing (n=6). There were 56 multidrug-resistant CRKP, having bla OXA-48-like and bla NDM-1/7 carbapenemases on self-transmissible IncF, A/C, IncL/M and IncX3 plasmids endowed with prophages, traT, resistance islands, and type I and II restriction modification systems (RMS). Plasmids and clades detected in this study were respectively related to globally established/disseminated plasmids clades/clones, evincing transboundary horizontal and vertical dissemination. Reduced susceptibility to colistin occurred in 23 strains. Common clones included ST307, ST607, ST17, ST39 and ST3559. IncFIIk virulent plasmid replicon was present in 56 strains. Whole-genome sequencing of six strains revealed least 41 virulence genes, extensive ompK36 mutations, and four different K- and O-loci types: KL2, KL25, KL27, KL102, O1, O2, O4 and O5. Types I, II and III RMS, conferring m6A (G A TC, G A TGNNNNNNTTG, CA A NNNNNNCATC motifs) and m4C (C C WGG) modifications on chromosomes and plasmids, were found. The nature of plasmid-mediated, clonal and multi-clonal dissemination of blaOXA-48-like and blaNDM-1 mirrors epidemiological trends observed for closely related plasmids and sequence types internationally. Worryingly, the presence of both bla OXA-48 and bla NDM-1 in the same isolates was observed. Plasmid-mediated transmission of RMS, virulome and prophages influence bacterial evolution, epidemiology, pathogenicity and resistance, threatening infection treatment. The influence of RMS on antimicrobial and bacteriophage therapy needs urgent investigation.
-
-
-
Comprehensive genome analyses of Sellimonas intestinalis, a potential biomarker of homeostasis gut recovery
Sellimonas intestinalis is a Gram-positive and anaerobic bacterial species previously considered as uncultivable. Although little is known about this Lachnospiraceae family member, its increased abundance has been reported in patients who have recovered from intestinal homeostasis after dysbiosis events. In this context, the aim of the present study was to take advantage of a massive in vitro culture protocol that allowed the recovery of extremely oxygen-sensitive species from faecal samples, which led to isolation of S. intestinalis . Whole genome analyses of 11 S . intestinalis genomes revealed that this species has a highly conserved genome with 99.7 % 16S rRNA gene sequence similarity, average nucleotide polymorphism results >95, and 50.1 % of its coding potential being part of the core genome. Despite this, the variable portion of its genome was informative enough to reveal the existence of three lineages (lineage-I including isolates from Chile and France, lineage-II from South Korea and Finland, and lineage-III from China and one isolate from the USA) and evidence of some recombination signals. The identification of a cluster of orthologous groups revealed a high number of genes involved in metabolism, including amino acid and carbohydrate transport as well as energy production and conversion, which matches with the metabolic profile previously reported for microbiota from healthy individuals. Additionally, virulence factors and antimicrobial resistance genes were found (mainly in lineage-III), which could favour their survival during antibiotic-induced dysbiosis. These findings provide the basis of knowledge about the potential of S. intestinalis as a bioindicator of intestinal homeostasis recovery and contribute to advancing the characterization of gut microbiota members with beneficial potential.
-
- Phylogeography
-
-
Sudden emergence of a Neisseria gonorrhoeae clade with reduced susceptibility to extended-spectrum cephalosporins, Norway
Neisseria gonorrhoeae multilocus sequence type (ST)-7827 emerged in a dramatic fashion in Norway in the period 2016–2018. Here, we aim to shed light on the provenance and expansion of this ST. ST-7827 was found to be polyphyletic, but the majority of members belonged to a monophyletic clade we termed PopPUNK cluster 7827 (PC-7827). In Norway, both PC-7827 and ST-7827 isolates were almost exclusively isolated from men. Phylogeographical analyses demonstrated an Asian origin of the genogroup, with multiple inferred exports to Europe and the USA. The genogroup was uniformly resistant to fluoroquinolones, and associated with reduced susceptibility to both azithromycin and the extended-spectrum cephalosporins (ESCs) cefixime and ceftriaxone. From a genetic background including the penA allele 13.001, associated with reduced ESC susceptibility, we identified repeated events of acquisition of porB alleles associated with further reduction in ceftriaxone susceptibility. Transmission of the strain was significantly reduced in Norway in 2019, but our results indicate the existence of a recently established global reservoir. The worrisome drug-resistance profile and rapid emergence of PC-7827 calls for close monitoring of the situation.
-
- Mechanisms of Evolution
-
-
Long inverted repeats around the chromosome replication terminus in the model strain Bacillus thuringiensis serovar israelensis BGSC 4Q7
More LessBacillus thuringiensis serovar israelensis is the most widely used natural biopesticide against mosquito larvae worldwide. Its lineage has been actively studied and a plasmid-free strain, B . thuringiensis serovar israelensis BGSC 4Q7 (4Q7), has been produced. Previous sequencing of the genome of this strain has revealed the persistent presence of a 235 kb extrachromosomal element, pBtic235, which has been shown to be an inducible prophage, although three putative chromosomal prophages have been lost. Moreover, a 492 kb region, potentially including the standard replication terminus, has also been deleted in the 4Q7 strain, indicating an absence of essential genes in this area. We reanalysed the genome coverage distribution of reads for the previously sequenced variant strain, and sequenced two independently maintained samples of the 4Q7 strain. A 553 kb area, close to the 492 kb deletion, was found to be duplicated. This duplication presumably restored the equal sizes of the replichores, and a balanced functioning of replication termination. An analysis of genome assembly graphs revealed a transient association of the host chromosome with the pBtic235 element. This association may play a functional role in the replication of the bacterial chromosome, and the termination of this process in particular. The genome-restructuring events detected may modify the genetic status of cytotoxic or haemolytic toxins, potentially influencing strain virulence. Twelve of the single-nucleotide variants identified in 4Q7 were probably due to the procedure used for strain construction or were present in the precursor of this strain. No sequence variants were found in pBtic235, but the distribution of the corresponding 4Q7 reads indicates a significant difference from counterparts in natural B. thuringiensis serovar israelensis strains, suggesting a duplication or over-replication in 4Q7. Thus, the 4Q7 strain is not a pure plasmid-less offshoot, but a highly genetically modified derivative of its natural ancestor. In addition to potentially influencing virulence, genome-restructuring events can modify the replication termination machinery. These findings have potential implications for the conclusions of virulence studies on 4Q7 as a model, but they also raise interesting fundamental questions about the functioning of the Bacillus genome.
-
-
-
Evidence of homologous recombination as a driver of diversity in Brachyspira pilosicoli
The enteric, pathogenic spirochaete Brachyspira pilosicoli colonizes and infects a variety of birds and mammals, including humans. However, there is a paucity of genomic data available for this organism. This study introduces 12 newly sequenced draft genome assemblies, boosting the cohort of examined isolates by fourfold and cataloguing the intraspecific genomic diversity of the organism more comprehensively. We used several in silico techniques to define a core genome of 1751 genes and qualitatively and quantitatively examined the intraspecific species boundary using phylogenetic analysis and average nucleotide identity, before contextualizing this diversity against other members of the genus Brachyspira . Our study revealed that an additional isolate that was unable to be species typed against any other Brachyspira lacked putative virulence factors present in all other isolates. Finally, we quantified that homologous recombination has as great an effect on the evolution of the core genome of the B. pilosicoli as random mutation (r/m=1.02). Comparative genomics has informed Brachyspira diversity, population structure, host specificity and virulence. The data presented here can be used to contribute to developing advanced screening methods, diagnostic assays and prophylactic vaccines against this zoonotic pathogen.
-
- Communicable Disease Genomics
-
-
Molecular insights into meningococcal carriage isolates from Burkina Faso 7 years after introduction of a serogroup A meningococcal conjugate vaccine
In 2010, Burkina Faso completed the first nationwide mass-vaccination campaign of a meningococcal A conjugate vaccine, drastically reducing the incidence of disease caused by serogroup A meningococci. Since then, other strains, such as those belonging to serogroups W, X and C, have continued to cause outbreaks within the region. A carriage study was conducted in 2016 and 2017 in the country to characterize the meningococcal strains circulating among healthy individuals following the mass-vaccination campaign. Four cross-sectional carriage evaluation rounds were conducted in two districts of Burkina Faso, Kaya and Ouahigouya. Oropharyngeal swabs were collected for the detection of Neisseria meningitidis by culture. Confirmed N. meningitidis isolates underwent whole-genome sequencing for molecular characterization. Among 13 758 participants, 1035 (7.5 %) N . meningitidis isolates were recovered. Most isolates (934/1035; 90.2 %) were non-groupable and primarily belonged to clonal complex (CC) 192 (822/934; 88 %). Groupable isolates (101/1035; 9.8 %) primarily belonged to CCs associated with recent outbreaks in the region, such as CC11 (serogroup W) and CC10217 (serogroup C); carried serogroup A isolates were not detected. Phylogenetic analysis revealed several CC11 strains circulating within the country, several of which were closely related to invasive isolates. Three sequence types (STs) were identified among eleven CC10217 carriage isolates, two of which have caused recent outbreaks in the region (ST-10217 and ST-12446). Our results show the importance of carriage studies to track the outbreak-associated strains circulating within the population in order to inform future vaccination strategies and molecular surveillance programmes.
-
- Microbial Communities
- Other - Animals, Insects, Plants
-
-
Chronic cigarette smoke exposure and pneumococcal infection induce oropharyngeal microbiota dysbiosis and contribute to long-lasting lung damage in mice
Environmental factors, such as cigarette smoking or lung infections, may influence chronic obstructive pulmonary disease (COPD) progression by modifying the respiratory tract microbiome. However, whether the disease itself induces or maintains dysbiosis remains undefined. In this longitudinal study, we investigated the oropharyngeal microbiota composition and disease progression of mice (in cages of 5–10 mice per cage) before, during and up to 3 months after chronic cigarette smoke exposure or exposure to room air for 6 months. Cigarette smoke exposure induced pulmonary emphysema measurable at the end of exposure for 6 months, as well as 3 months following smoke exposure cessation. Using both classical culture methods and 16S rRNA sequencing, we observed that cigarette smoke exposure altered the relative composition of the oropharyngeal microbiota and reduced its diversity (P <0.001). More than 60 taxa were substantially reduced after 6 months of smoke exposure (P <0.001) However, oropharyngeal microbiota disordering was reversed 3 months after smoke exposure cessation and no significant difference was observed compared to age-matched control mice. The effects of lung infection with Streptococcus pneumoniae on established smoke-induced emphysema and on the oropharyngeal microbiota were also evaluated. Inoculation with S. pneumoniae induced lung damage and altered the microbiota composition for a longer time compared to control groups infected but not previously exposed to smoke (P=0.01). Our data demonstrate effects of cigarette smoke and pneumococcus infection leading to altered microbiota and emphysema development. The reversal of the disordering of the microbiota composition, but not lung damage, following smoke exposure cessation and after clearance of infection suggest that changes in lung structure are not sufficient to sustain a disordered microbiota in mice. Whether changes in the airway microbiota contribute to inducing emphysema requires further investigation.
-
- Microbe-Niche Interactions
- Environmental Niche Adaptation
-
-
Comparative genomics of wild-type and laboratory-evolved biofilm-overproducing Deinococcus metallilatus strains
More LessDeinococcus metallilatus MA1002 was exposed to ultraviolet radiation to generate mutants with enhanced biofilm production. Two strains (nos 5 and 6) were then selected based on their high biofilm formation, as well as their possession of higher concentrations of extracellular matrix components (eDNA, protein and saccharides) than the wild-type (WT). Genomic sequencing revealed the presence of large genome deletions in a secondary chromosome in the mutants. Expression analyses of the WT and mutant strains indicated the upregulation of genes associated with exopolysaccharide synthesis and stress response. The mutant strains showed high mortality in glucose-supplemented (TYG) medium; however, cell death and biofilm formation were not increased in mutant cells grown under acetate- or glyoxylate-added media, suggesting that metabolic toxicity during glucose metabolism induced a high rate of cell death but improved biofilm formation in mutant strains. In damaged cells, eDNAs contributed to the enhanced biofilm formation of D. metallilatus .
-
-
-
Comparative genome analyses of Mycobacteroides immunogenum reveals two potential novel subspecies
More LessMycobacteroides immunogenum is an emerging opportunistic pathogen implicated in nosocomial infections. Comparative genome analyses may provide better insights into its genomic structure, functions and evolution. The present analysis showed that M. immunogenum has an open pan-genome. Approximately 36.8% of putative virulence genes were identified in the accessory regions of M. immunogenum . Phylogenetic analyses revealed two potential novel subspecies of M. immunogenum , supported by evidence from ANIb (average nucleotide identity using blast) and GGDC (Genome to Genome Distance Calculator) analyses. We identified 74 genomic islands (GIs) in Subspecies 1 and 23 GIs in Subspecies 2. All Subspecies 2-harboured GIs were not found in Subspecies 1, indicating that they might have been acquired by Subspecies 2 after their divergence. Subspecies 2 has more defence genes than Subspecies 1, suggesting that it might be more resistant to the insertion of foreign DNA and probably explaining why Subspecies 2 has fewer GIs. Positive selection analysis suggest that M. immunogenum has a lower selection pressure compared to non-pathogenic mycobacteria. Thirteen genes were positively selected and many were involved in virulence.
-
-
-
Fundamental differences in physiology of Bordetella pertussis dependent on the two-component system Bvg revealed by gene essentiality studies
The identification of genes essential for a bacterium’s growth reveals much about its basic physiology under different conditions. Bordetella pertussis , the causative agent of whooping cough, adopts both virulent and avirulent states through the activity of the two-component system, Bvg. The genes essential for B. pertussis growth in vitro were defined using transposon sequencing, for different Bvg-determined growth states. In addition, comparison of the insertion indices of each gene between Bvg phases identified those genes whose mutation exerted a significantly different fitness cost between phases. As expected, many of the genes identified as essential for growth in other bacteria were also essential for B. pertussis . However, the essentiality of some genes was dependent on Bvg. In particular, a number of key cell wall biosynthesis genes, including the entire mre/mrd locus, were essential for growth of the avirulent (Bvg minus) phase but not the virulent (Bvg plus) phase. In addition, cell wall biosynthesis was identified as a fundamental process that when disrupted produced greater fitness costs for the Bvg minus phase compared to the Bvg plus phase. Bvg minus phase growth was more susceptible than Bvg plus phase growth to the cell wall-disrupting antibiotic ampicillin, demonstrating the increased susceptibility of the Bvg minus phase to disruption of cell wall synthesis. This Bvg-dependent conditional essentiality was not due to Bvg-regulation of expression of cell wall biosynthesis genes; suggesting that this fundamental process differs between the Bvg phases in B. pertussis and is more susceptible to disruption in the Bvg minus phase. The ability of a bacterium to modify its cell wall synthesis is important when considering the action of antibiotics, particularly if developing novel drugs targeting cell wall synthesis.
-
- Genomic Methodologies
- Genome Variation Detection
-
-
Read trimming has minimal effect on bacterial SNP-calling accuracy
More LessRead alignment is the central step of many analytic pipelines that perform variant calling. To reduce error, it is common practice to pre-process raw sequencing reads to remove low-quality bases and residual adapter contamination, a procedure collectively known as ‘trimming’. Trimming is widely assumed to increase the accuracy of variant calling, although there are relatively few systematic evaluations of its effects and no clear consensus on its efficacy. As sequencing datasets increase both in number and size, it is worthwhile reappraising computational operations of ambiguous benefit, particularly when the scope of many analyses now routinely incorporates thousands of samples, increasing the time and cost required. Using a curated set of 17 Gram-negative bacterial genomes, this study initially evaluated the impact of four read-trimming utilities (Atropos, fastp, Trim Galore and Trimmomatic), each used with a range of stringencies, on the accuracy and completeness of three bacterial SNP-calling pipelines. It was found that read trimming made only small, and statistically insignificant, increases in SNP-calling accuracy even when using the highest-performing pre-processor in this study, fastp. To extend these findings, >6500 publicly archived sequencing datasets from Escherichia coli , Mycobacterium tuberculosis and Staphylococcus aureus were re-analysed using a common analytic pipeline. Of the approximately 125 million SNPs and 1.25 million indels called across all samples, the same bases were called in 98.8 and 91.9 % of cases, respectively, irrespective of whether raw reads or trimmed reads were used. Nevertheless, the proportion of mixed calls (i.e. calls where <100 % of the reads support the variant allele; considered a proxy of false positives) was significantly reduced after trimming, which suggests that while trimming rarely alters the set of variant bases, it can affect the proportion of reads supporting each call. It was concluded that read quality- and adapter-trimming add relatively little value to a SNP-calling pipeline and may only be necessary if small differences in the absolute number of SNP calls, or the false call rate, are critical. Broadly similar conclusions can be drawn about the utility of trimming to an indel-calling pipeline. Read trimming remains routinely performed prior to variant calling likely out of concern that doing otherwise would typically have negative consequences. While historically this may have been the case, the data in this study suggests that read trimming is not always a practical necessity.
-
- Responses to Human Interventions
- Antibiotics
-
-
Genomic rearrangements uncovered by genome-wide co-evolution analysis of a major nosocomial pathogen, Enterococcus faecium
Enterococcus faecium is a gut commensal of the gastro-digestive tract, but also known as nosocomial pathogen among hospitalized patients. Population genetics based on whole-genome sequencing has revealed that E. faecium strains from hospitalized patients form a distinct clade, designated clade A1, and that plasmids are major contributors to the emergence of nosocomial E. faecium . Here we further explored the adaptive evolution of E. faecium using a genome-wide co-evolution study (GWES) to identify co-evolving single-nucleotide polymorphisms (SNPs). We identified three genomic regions harbouring large numbers of SNPs in tight linkage that are not proximal to each other based on the completely assembled chromosome of the clade A1 reference hospital isolate AUS0004. Close examination of these regions revealed that they are located at the borders of four different types of large-scale genomic rearrangements, insertion sites of two different genomic islands and an IS30-like transposon. In non-clade A1 isolates, these regions are adjacent to each other and they lack the insertions of the genomic islands and IS30-like transposon. Additionally, among the clade A1 isolates there is one group of pet isolates lacking the genomic rearrangement and insertion of the genomic islands, suggesting a distinct evolutionary trajectory. In silico analysis of the biological functions of the genes encoded in three regions revealed a common link to a stress response. This suggests that these rearrangements may reflect adaptation to the stringent conditions in the hospital environment, such as antibiotics and detergents, to which bacteria are exposed. In conclusion, to our knowledge, this is the first study using GWES to identify genomic rearrangements, suggesting that there is considerable untapped potential to unravel hidden evolutionary signals from population genomic data.
-
- Systems Microbiology
- Large-scale Comparative Genomics
-
-
Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm
Wolbachia are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining Wolbachia ‘species’ is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A–F, H–Q and S. However, available genomic data remain limited and not representative of the full Wolbachia diversity; indeed, of the 24 complete genomes and 55 draft genomes of Wolbachia available to date, 84 % belong to supergroups A and B, exclusively composed of Wolbachia from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of Wolbachia from filarial nematodes. Two complete genomes, wCtub and wDcau, are the smallest Wolbachia genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft Wolbachia genome from a supergroup F filarial nematode representative (wMhie), two genomes from supergroup D (wLsig and wLbra) and the complete genome of wDimm from supergroup C. Our new data confirm the paradigm of smaller Wolbachia genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many Wolbachia from arthropods, where both are more abundant. However, we observe differences among the Wolbachia genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J Wolbachia, and more transposable elements observed in supergroup D Wolbachia compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host–symbiont associations. Overall, there appears to be no single Wolbachia –filarial nematode pattern of co-evolution or symbiotic relationship.
-
- Method
-
- Systems Microbiology
- Genome Annotation, Metabolic Reconstructions
-
-
NonClasGP-Pred: robust and efficient prediction of non-classically secreted proteins by integrating subset-specific optimal models of imbalanced data
More LessNon-classically secreted proteins (NCSPs) are proteins that are located in the extracellular environment, although there is a lack of known signal peptides or secretion motifs. They usually perform different biological functions in intracellular and extracellular environments, and several of their biological functions are linked to bacterial virulence and cell defence. Accurate protein localization is essential for all living organisms, however, the performance of existing methods developed for NCSP identification has been unsatisfactory and in particular suffer from data deficiency and possible overfitting problems. Further improvement is desirable, especially to address the lack of informative features and mining subset-specific features in imbalanced datasets. In the present study, a new computational predictor was developed for NCSP prediction of gram-positive bacteria. First, to address the possible prediction bias caused by the data imbalance problem, ten balanced subdatasets were generated for ensemble model construction. Then, the F-score algorithm combined with sequential forward search was used to strengthen the feature representation ability for each of the training subdatasets. Third, the subset-specific optimal feature combination process was adopted to characterize the original data from different aspects, and all subdataset-based models were integrated into a unified model, NonClasGP-Pred, which achieved an excellent performance with an accuracy of 93.23 %, a sensitivity of 100 %, a specificity of 89.01 %, a Matthew’s correlation coefficient of 87.68 % and an area under the curve value of 0.9975 for ten-fold cross-validation. Based on assessment on the independent test dataset, the proposed model outperformed state-of-the-art available toolkits. For availability and implementation, see: http://lab.malab.cn/~wangchao/softwares/NonClasGP/.
-
Most Read This Month
