- Volume 10, Issue 1, 2024
Volume 10, Issue 1, 2024
- Short Communications
-
- Pathogens and Epidemiology
-
-
Complete genomes of Clostridium botulinum type B(F) isolates associated with a 1995 foodborne botulism outbreak from commercial pâté reveals a recombination event disrupting the ntnh gene
More LessFoodborne botulism is a neuroparalytic disease caused by ingestion of foods contaminated with botulinum neurotoxin (BoNT), produced by Clostridium botulinum . In 1995 a husband and wife from Québec, Canada, were hospitalized for several months with prolonged muscle paralysis after ingesting a commercial pâté de campagne. Examination of faecal samples from both patients and the pâté produced viable Group I (proteolytic) C. botulinum type B from each of the three samples. Whole genome sequencing revealed that all three isolates contain identical bont/B5 and bont/F2 genes encoded on a plasmid. Both faecal isolate genomes were identical in chromosome and plasmid length, as well as gene content. The genome of the pâté isolate was nearly identical to that of the faecal isolates with the notable difference of a missing 13-gene insertion on the bont/B5 cluster disrupting the ntnh gene. Examination of the insertion revealed several mobile genetic elements that participate in recombination.
-
- Methods
-
- Pathogens and Epidemiology
-
-
pyngoST: fast, simultaneous and accurate multiple sequence typing of Neisseria gonorrhoeae genome collections
More LessExtensive gonococcal surveillance has been performed using molecular typing at global, regional, national and local levels. The three main genotyping schemes for this pathogen, multi-locus sequence typing (MLST), Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST) and N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR), allow inter-laboratory and inter-study comparability and reproducibility and provide an approximation to the gonococcal population structure. With whole-genome sequencing (WGS), we obtain a substantially higher and more accurate discrimination between strains compared to previous molecular typing schemes. However, WGS remains unavailable or not affordable in many laboratories, and thus bioinformatic tools that allow the integration of data among laboratories with and without access to WGS are imperative for a joint effort to increase our understanding of global pathogen threats. Here, we present pyngoST, a command-line Python tool for fast, simultaneous and accurate sequence typing of N. gonorrhoeae from WGS assemblies. pyngoST integrates MLST, NG-MAST and NG-STAR, and can also designate NG-STAR clonal complexes, NG-MAST genogroups and penA mosaicism, facilitating multiple sequence typing from large WGS assembly collections. Exact and closest matches for existing alleles and sequence types are reported. The implementation of a fast multi-pattern searching algorithm allows pyngoST to be rapid and report results on 500 WGS assemblies in under 1 min. The mapping of typing results on a core genome tree of 2375 gonococcal genomes revealed that NG-STAR is the scheme that best represents the population structure of this pathogen, emphasizing the role of antimicrobial use and antimicrobial resistance as a driver of gonococcal evolution. This article contains data hosted by Microreact.
-