Skip to content
1887

Abstract

Over 60 years ago, researchers started the genetic analysis of bacterial cell division by isolating conditional, temperature-sensitive mutants of essential cell division genes. These early mutants were obtained by mutagenesis with chemical agents that introduced dozens to hundreds of mutations in the bacterial genomes. In this work, we present the complete genome sequences of six of these original mutants on , and genes, along with two of the strains used to generate them. The genomes of mutants obtained by exposure to nitrosoguanidine had 100 to 400 mutations. Transducing target alleles into a new strain effectively reduced the number of mutations, but those near the target gene were co-transduced with it. In contrast, a mutant generated by site-directed mutagenesis maintained the genomic background intact. The genomic analysis improves our understanding of these foundational strains, offering insights into the effects of historical mutagenesis techniques. These findings underscore the importance of genomic characterization in ensuring accurate interpretations of experimental results in microbiological research.

Funding
This study was supported by the:
  • Instituto de Salud Carlos III (Award CP23/00036)
    • Principal Award Recipient: EliasDahdouh
  • IdiPAZ (Award Dr. Luis Álvarez 2024)
    • Principal Award Recipient: JesúsMingorance
  • Instituto de Salud Carlos III (Award PI19/01356)
    • Principal Award Recipient: JesúsMingorance
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001558
2025-11-04
2025-11-07

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/mgen/11/11/mgen001558.html?itemId=/content/journal/mgen/10.1099/mgen.0.001558&mimeType=html&fmt=ahah

References

  1. Ricard M, Hirota Y. Process of cellular division in Escherichia coli: physiological study on thermosensitive mutants defective in cell division. J Bacteriol 1973; 116:314–322 [View Article] [PubMed]
    [Google Scholar]
  2. Donachie WD. The cell cycle of Escherichia coli. Annu Rev Microbiol 1993; 47:199–230 [View Article] [PubMed]
    [Google Scholar]
  3. Nanninga N. Cell division and peptidoglycan assembly in Escherichia coli. Mol Microbiol 1991; 5:791–795 [View Article] [PubMed]
    [Google Scholar]
  4. Van De Putte P, Van Dillewijn J, Roersch A. The selection of mutants of Escherichia coli with impaired cell division at elevated temperature. Mutat Res 1964; 106:121–128 [View Article] [PubMed]
    [Google Scholar]
  5. Lazdunski CJ, Lazdunski AM, Bourrillon MJ. Cell division in Escherichia coli: aspects of the defective gene product in a thermosensitive mutant Fts-A. Biochimie 1974; 55:1253–1259 [View Article]
    [Google Scholar]
  6. Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33–45 [View Article] [PubMed]
    [Google Scholar]
  7. Du S, Lutkenhaus J. Assembly and activation of the Escherichia coli divisome. Mol Microbiol 2017; 105:177–187 [View Article] [PubMed]
    [Google Scholar]
  8. Donachie WD, Begg KJ, Vicente M. Cell length, cell growth and cell division. Nature 1976; 264:328–333 [View Article] [PubMed]
    [Google Scholar]
  9. Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiol Rev 1988; 52:354–374 [View Article] [PubMed]
    [Google Scholar]
  10. Lutkenhaus JF, Donachie WD. Identification of the ftsA gene product. J Bacteriol 1979; 137:1088–1094 [View Article] [PubMed]
    [Google Scholar]
  11. de Pedro MA, Llamas JE, Cánovas JL. A timing control of cell division in Escherichia coli. J Gen Microbiol 1975; 91:307–314 [View Article] [PubMed]
    [Google Scholar]
  12. Faust MA, Aotaky AE, Hargadon MT. Effect of physical parameters on the in situ survival of Escherichia coli MC-6 in an estuarine environment. Appl Microbiol 1975; 30:800–806 [View Article] [PubMed]
    [Google Scholar]
  13. Tormo A, Vicente M. The ftsA gene product participates in formation of the Escherichia coli septum structure. J Bacteriol 1984; 157:779–784 [View Article] [PubMed]
    [Google Scholar]
  14. Tormo A, Martínez-Salas E, Vicente M. Involvement of the ftsA gene product in late stages of the Escherichia coli cell cycle. J Bacteriol 1980; 141:806–813 [View Article] [PubMed]
    [Google Scholar]
  15. Sánchez M, Dopazo A, Pla J, Robinson AC, Vicente M. Characterisation of mutant alleles of the cell division protein FtsA, a regulator and structural component of the Escherichia coli septator. Biochimie 1994; 76:1071–1074 [View Article] [PubMed]
    [Google Scholar]
  16. Lutkenhaus JF, Wolf-Watz H, Donachie WD. Organization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ). J Bacteriol 1980; 142:615–620 [View Article] [PubMed]
    [Google Scholar]
  17. Hirota Y, Ryter A, Jacob F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 1968; 33:677–693 [View Article] [PubMed]
    [Google Scholar]
  18. Begg KJ, Hatfull GF, Donachie WD. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell division gene ftsQ. J Bacteriol 1980; 144:435–437 [View Article] [PubMed]
    [Google Scholar]
  19. Casadaban MJ, Cohen SN. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 1980; 138:179–207 [View Article] [PubMed]
    [Google Scholar]
  20. Palacios P, Vicente M, Sánchez M. Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Mol Microbiol 1996; 20:1093–1098 [View Article] [PubMed]
    [Google Scholar]
  21. Sánchez-Gorostiaga A, Palacios P, Martínez-Arteaga R, Sánchez M, Casanova M et al. Life without division: physiology of Escherichia coli FtsZ-deprived filaments. mBio 2016; 7:e01620-16 [View Article] [PubMed]
    [Google Scholar]
  22. Abueg LAL, Afgan E, Allart O, Awan AH, Bacon WA et al. The galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acid Res 2024; 52:W83–W94 [View Article]
    [Google Scholar]
  23. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acid Res 2023; 51:W484–W492 [View Article]
    [Google Scholar]
  24. Bateman A, Martin M-J, Orchard S, Magrane M, Adesina A et al. UniProt: the universal protein knowledgebase in 2025. Nucleic Acids Res 2025; 53:D609–D617 [View Article]
    [Google Scholar]
  25. Singh SK, SaiSree L, Amrutha RN, Reddy M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol Microbiol 2012; 86:1036–1051 [View Article] [PubMed]
    [Google Scholar]
  26. Parkhomchuk D, Amstislavskiy V, Soldatov A, Ogryzko V. Use of high throughput sequencing to observe genome dynamics at a single cell level. Proc Natl Acad Sci USA 2009; 106:20830–20835 [View Article] [PubMed]
    [Google Scholar]
  27. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K et al. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2006; 2:2006.0007 [View Article] [PubMed]
    [Google Scholar]
  28. Browning DF, Hobman JL, Busby SJW. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Microb Genom 2023; 9:mgen000922 [View Article] [PubMed]
    [Google Scholar]
  29. Dunne KA, Chaudhuri RR, Rossiter AE, Beriotto I, Browning DF et al. Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microb Genom 2017; 3:mgen000106 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001558
Loading
/content/journal/mgen/10.1099/mgen.0.001558
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error