Skip to content
1887
Preview this article:

There is no abstract available.

Funding
This study was supported by the:
  • Japan Science and Technology Agency (Award JPMJAX21BK)
    • Principal Award Recipient: YosukeNishimura
  • Japan Agency for Medical Research and Development (Award JP24fk0108665, JP24fk0108683, JP24fk0108712, JP24fk0108642, JP24gm1610003, JP24wm0225029, and JP24wm0225022)
    • Principal Award Recipient: MasatoSuzuki
  • Research Institute of Green Science and Technology Fund for Research Project Support, Shizuoka University (Award 2023-RIGST-23104 and 2024-RIGST-24202)
    • Principal Award Recipient: MasakiShintani
  • Institute for Fermentation, Osaka (Award L-2023-1-002)
    • Principal Award Recipient: MasakiShintani
  • Japan Society for the Promotion of Science (Award JP20KK0128, JP23H02124)
    • Principal Award Recipient: MasakiShintani
  • Japan Agency for Medical Research and Development (Award JP23wm0225029)
    • Principal Award Recipient: MasakiShintani
  • Ohsumi Frontier Science Foundation
    • Principal Award Recipient: MasakiShintani
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001491
2025-09-09
2025-11-18

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/mgen/11/9/mgen001491.html?itemId=/content/journal/mgen/10.1099/mgen.0.001491&mimeType=html&fmt=ahah

References

  1. Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in gram-negative bacteria: from the cellular to the community level. Genes (Basel) 2020; 11:1239 [View Article] [PubMed]
    [Google Scholar]
  2. Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet 2024; 404:1199–1226 [View Article]
    [Google Scholar]
  3. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article] [PubMed]
    [Google Scholar]
  4. Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom 2020; 6:mgen000435 [View Article] [PubMed]
    [Google Scholar]
  5. Chenhaka L-H, Van Wyk DAB, Mienie C, Bezuidenhout CC, Lekota KE. The phylogenomic landscape of extended-spectrum β-lactamase producing Citrobacter species isolated from surface water. BMC Genomics 2023; 24:755 [View Article] [PubMed]
    [Google Scholar]
  6. Sanderson H, McCarthy MC, Nnajide CR, Sparrow J, Rubin JE et al. Identification of plasmids in avian-associated Escherichia coli using nanopore and illumina sequencing. BMC Genomics 2023; 24:698 [View Article] [PubMed]
    [Google Scholar]
  7. Paganini JA, Kerkvliet JJ, Vader L, Plantinga NL, Meneses R et al. PlasmidEC and gplas2: an optimized short-read approach to predict and reconstruct antibiotic resistance plasmids in Escherichia coli. Microb Genom 2024; 10:e001193 [View Article] [PubMed]
    [Google Scholar]
  8. Molano L-A, Hirsch P, Hannig M, Müller R, Keller A. The PLSDB 2025 update: enhanced annotations and improved functionality for comprehensive plasmid research. Nucleic Acids Res 2025; 53:D189–D196 [View Article] [PubMed]
    [Google Scholar]
  9. Novick RP. Plasmid incompatibility. Microbiol Rev 1987; 51:381–395 [View Article] [PubMed]
    [Google Scholar]
  10. Thomas CM, Haines AS. Plasmids of the genus Pseudomonas. In Ramos JL. eds Pseudomonas Boston, MA: Springer US; pp 197–231 [View Article]
    [Google Scholar]
  11. Petrovski S, Stanisich VA. Embedded elements in the IncPbeta plasmids R772 and R906 can be mobilized and can serve as a source of diverse and novel elements. Microbiology 2011; 157:1714–1725 [View Article] [PubMed]
    [Google Scholar]
  12. Thomas CM. Bacterial conjugation in gram-negative bacteria. In Funnell BE, Phillips GJ. eds Plasmid Biology Washington, DC: ASM Press; pp 203–226
    [Google Scholar]
  13. Xiong J, Alexander DC, Ma JH, Déraspe M, Low DE et al. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother 2013; 57:3775–3782 [View Article] [PubMed]
    [Google Scholar]
  14. Shintani M, Suzuki H, Nojiri H, Suzuki M. Precise classification of antimicrobial resistance-associated IncP-2 megaplasmids for molecular epidemiological studies on Pseudomonas species. J Antimicrob Chemother 2022; 77:1203–1205 [View Article] [PubMed]
    [Google Scholar]
  15. Wang N, Lei T, Zhu Y, Li Y, Cai H et al. Characterization of two novel VIM-type metallo-β-lactamases, VIM-84 and VIM-85, associated with the spread of IncP-2 megaplasmids in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0154423 [View Article] [PubMed]
    [Google Scholar]
  16. Haines AS, Jones K, Cheung M, Thomas CM. The IncP-6 plasmid Rms149 consists of a small mobilizable backbone with multiple large insertions. J Bacteriol 2005; 187:4728–4738 [View Article] [PubMed]
    [Google Scholar]
  17. Yao Y YY, Lazaro-Perona F FL, Falgenhauer L LF, Valverde A AV, Imirzalioglu C CI et al. Insights into a novel blaKPC-2-encoding IncP-6 plasmid reveal carbapenem-resistance circulation in several Enterobacteriaceae species from wastewater and a hospital source in Spain. Front Microbiol 2017; 8:1143 [View Article]
    [Google Scholar]
  18. Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H et al. Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 2003; 326:21–33 [View Article] [PubMed]
    [Google Scholar]
  19. Yano H, Miyakoshi M, Ohshima K, Tabata M, Nagata Y et al. Complete nucleotide sequence of TOL plasmid pDK1 provides evidence for evolutionary history of IncP-7 catabolic plasmids. J Bacteriol 2010; 192:4337–4347 [View Article] [PubMed]
    [Google Scholar]
  20. Yano H, Garruto CE, Sota M, Ohtsubo Y, Nagata Y et al. Complete sequence determination combined with analysis of transposition/site-specific recombination events to explain genetic organization of IncP-7 TOL plasmid pWW53 and related mobile genetic elements. J Mol Biol 2007; 369:11–26 [View Article] [PubMed]
    [Google Scholar]
  21. Zeng L, Zhan Z, Hu L, Jiang X, Zhang Y et al. Genetic characterization of a blaVIM–24-carrying IncP-7β plasmid p1160-VIM and a blaVIM–4-harboring integrative and conjugative element Tn6413 from clinical Pseudomonas aeruginosa. Front Microbiol 2019; 10:213 [View Article]
    [Google Scholar]
  22. Greated A, Lambertsen L, Williams PA, Thomas CM. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 2002; 4:856–871 [View Article] [PubMed]
    [Google Scholar]
  23. Sota M, Yano H, Ono A, Miyazaki R, Ishii H et al. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol 2006; 188:4057–4067 [View Article] [PubMed]
    [Google Scholar]
  24. Sevastsyanovich YR, Krasowiak R, Bingle LEH, Haines AS, Sokolov SL et al. Diversity of IncP-9 plasmids of Pseudomonas. Microbiology (Reading) 2008; 154:2929–2941 [View Article] [PubMed]
    [Google Scholar]
  25. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019; 47:D195–D202 [View Article] [PubMed]
    [Google Scholar]
  26. Sen D, Brown CJ, Top EM, Sullivan J. Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol Biol Evol 2013; 30:154–166 [View Article] [PubMed]
    [Google Scholar]
  27. Hayakawa M, Tokuda M, Kaneko K, Nakamichi K, Yamamoto Y et al. Hitherto-unnoticed self-transmissible plasmids widely distributed among different environments in Japan. Appl Environ Microbiol 2022; 88:e0111422 [View Article] [PubMed]
    [Google Scholar]
  28. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B et al. Plasmids carrying antimicrobial resistance genes in enterobacteriaceae. J Antimicrob Chemother 2018; 73:1121–1137 [View Article] [PubMed]
    [Google Scholar]
  29. Schmartz GP, Hartung A, Hirsch P, Kern F, Fehlmann T et al. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res 2022; 50:D273–D278 [View Article] [PubMed]
    [Google Scholar]
  30. Douarre P-E, Mallet L, Radomski N, Felten A, Mistou M-Y. Analysis of COMPASS, a new comprehensive plasmid database revealed prevalence of multireplicon and extensive diversity of IncF plasmids. Front Microbiol 2020; 11:483 [View Article] [PubMed]
    [Google Scholar]
  31. Fang L, Chen R, Li C, Sun J, Liu R et al. The association between the genetic structures of commonly incompatible plasmids in Gram-negative bacteria, their distribution and the resistance genes. Front Cell Infect Microbiol 2024; 14:1472876 [View Article] [PubMed]
    [Google Scholar]
  32. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  33. Carattoli A, Hasman H. PlasmidFinder and In silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol 2020; 2075:285–294 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001491
Loading
/content/journal/mgen/10.1099/mgen.0.001491
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error