Skip to content
1887

Abstract

Bacterial pathogens of the genus are responsible for soft-rot and blackleg diseases in a wide range of crops and have a global impact on food production. The emergence of new lineages and their competitive succession is frequently observed in species, in particular in . With a focus on one such recently emerged lineage in the Netherlands that causes blackleg in potatoes, we studied genome evolution in this genus using a reference-free graph-based pangenome approach. We clustered 1,977,865 proteins from 454 spp genomes into 30,156 homology groups. The genus pangenome is open, and its growth is mainly contributed by the accessory genome. Bacteriophage genes were enriched in the accessory genome and contributed 16% of the pangenome. Blackleg-causing isolates had increased genome size with high levels of prophage integration. To study the diversity and dynamics of these prophages across the pangenome, we developed an approach to trace prophages across genomes using pangenome homology group signatures. We identified lineage-specific as well as generalist bacteriophages infecting species. Our results capture the ongoing dynamics of mobile genetic elements, even in the clonal lineages. The observed lineage-specific prophage dynamics provide mechanistic insights into pangenome growth and contribution to the radiating lineages of .

Keyword(s): pangenome , Pectobacterium and prophages
Funding
This study was supported by the:
  • Ministerie van Economische Zaken (Award LWV20.235)
    • Principle Award Recipient: TheoA. J. van der Lee
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001392
2025-05-07
2025-05-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/11/5/mgen001392.html?itemId=/content/journal/mgen/10.1099/mgen.0.001392&mimeType=html&fmt=ahah

References

  1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012; 13:614–629 [View Article] [PubMed]
    [Google Scholar]
  2. Charkowski AO. The changing face of bacterial soft-rot diseases. Annu Rev Phytopathol 2018; 56:269–288 [View Article] [PubMed]
    [Google Scholar]
  3. Oulghazi S, Sarfraz S, Zaczek-Moczydlowska MA, Khayi S, Ed-Dra A et al. Pectobacterium brasiliense: genomics host range and disease management. Microorganisms 2021; 9:106 [View Article] [PubMed]
    [Google Scholar]
  4. Duarte V, de Boer S, Ward L, de Oliveira A. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J Appl Microbiol 2004; 96:535–545 [View Article] [PubMed]
    [Google Scholar]
  5. Nabhan S, De Boer SH, Maiss E, Wydra K. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J Appl Microbiol 2012; 113:904–913 [View Article] [PubMed]
    [Google Scholar]
  6. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang Y, Fan Q, Loria R. A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 2016; 39:252–259 [View Article] [PubMed]
    [Google Scholar]
  8. Portier P, Pedron J, Taghouti G, Fischer-Le Saux M, caullireau E et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int J Syst Evol Microbiol 2019; 69:3207–3216 [View Article]
    [Google Scholar]
  9. Motyka-Pomagruk A, Zoledowska S, Sledz W, Lojkowska E. The occurrence of bacteria from different species of Pectobacteriaceae on seed potato plantations in Poland. Eur J Plant Pathol 2021; 159:309–325 [View Article]
    [Google Scholar]
  10. Zhou J, Hu M, Hu A, Li C, Ren X et al. Isolation and genome analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, two new pathogens of taro. Front Plant Sci 2022; 13:852750 [View Article] [PubMed]
    [Google Scholar]
  11. Smoktunowicz M, Jonca J, Stachowska A, May M, Waleron MM et al. The international trade of ware vegetables and orna-mental plants-an underestimated risk of accelerated spreading of phytopathogenic bacteria in the era of globalisation and ongoing climatic changes. Pathogens 2022; 11:728 [View Article] [PubMed]
    [Google Scholar]
  12. Barny M-A, Thieffry S, Gomes de Faria C, Thebault E, Pédron J. Bacterial pathogens dynamic during multi-species infections. Peer Community Journal 2024; 4:e49 [View Article]
    [Google Scholar]
  13. de Werra P, Debonneville C, Kellenberger I, Dupuis B. Pathogenicity and relative abundance of Dickeya and Pectobacterium species in Switzerland: an epidemiological dichotomy. Microorganisms 2021; 9:2270 [View Article] [PubMed]
    [Google Scholar]
  14. Var der Wolf JM, de Haan EG, Kastelein P, Krijger M, Haas BH et al. Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other pectobacterium and dickeya species under climatic conditions prevailing in the Netherlands. Plant Pathol 2017; 66:571–583 [View Article]
    [Google Scholar]
  15. Wolf JM. et al. eds In Plant Diseases Caused by Dickeya and Pectobacterium Species Cham: Springer International Publishing; 2021 pp 215–261
    [Google Scholar]
  16. Pérombelon MCM. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology 2002; 51:1–12 [View Article]
    [Google Scholar]
  17. Jonkheer EM, Brankovics B, Houwers IM, van der Wolf JM, Bonants PJM et al. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genomics 2021; 22:265 [View Article] [PubMed]
    [Google Scholar]
  18. Li X, Ma Y, Liang S, Tian Y, Yin S et al. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 2018; 19:889 [View Article] [PubMed]
    [Google Scholar]
  19. Zoledowska S, Motyka-Pomagruk A, Sledz W, Mengoni A, Lojkowska E. High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics 2018; 19:751 [View Article] [PubMed]
    [Google Scholar]
  20. Li L, Yuan L, Shi Y, Xie X, Chai A et al. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genomics 2019; 20:486 [View Article]
    [Google Scholar]
  21. Zhang Y, Chu H, Yu L, He F, Gao Y et al. Analysis of the taxonomy, synteny, and virulence factors for soft rot pathogen Pectobacterium aroidearum in Amorphophallus konjac using comparative genomics. Front Microbiol 2022; 13:868709 [View Article] [PubMed]
    [Google Scholar]
  22. Camargo AP, Call L, Roux S, Nayfach S, Huntemann M et al. IMG/PR: a database of plasmids from genomes and metagenomes with rich annotations and metadata. Nucleic Acids Res 2023; 52:D164–D173 [View Article]
    [Google Scholar]
  23. Czajkowski R. May the phage be with you? prophage-like elements in the genomes of soft rot Pectobacteriaceae: Pectobacterium spp. and dickeya spp. Front Microbiol 2019; 10:138 [View Article]
    [Google Scholar]
  24. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010; 1:147 [View Article] [PubMed]
    [Google Scholar]
  25. Bondy-Denomy J, Davidson AR. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol 2014; 52:235–242 [View Article] [PubMed]
    [Google Scholar]
  26. Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat Rev Microbiol 2015; 13:641–650 [View Article] [PubMed]
    [Google Scholar]
  27. Harrison E, Brockhurst MA. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. Bioessays 2017; 39:1700112 [View Article] [PubMed]
    [Google Scholar]
  28. Taylor VL, Fitzpatrick AD, Islam Z, Maxwell K. Advances in Virus Research. In Kielian M, Mettenleiter TC, Roossinck MJ. eds vol 103 Academic Press; 2019 pp 1–31
  29. Evans TJ, Coulthurst SJ, Komitopoulou E, Salmond GPC. Two mobile Pectobacterium atrosepticum prophages modulate virulence. FEMS Microbiol Lett 2010; 304:195–202 [View Article] [PubMed]
    [Google Scholar]
  30. Nasser W, Beres SB, Olsen RJ, Dean MA, Rice KA et al. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc Natl Acad Sci USA 2014; 111:E1768–76 [View Article] [PubMed]
    [Google Scholar]
  31. Foxall RL, Means J, Marcinkiewicz AL, Schillaci C, DeRosia-Banick K et al. Inoviridae prophage and bacterial host dynamics during diversification, succession, and Atlantic invasion of Pacific-native Vibrio parahaemolyticus. mBio 2024; 15:e0285123 [View Article] [PubMed]
    [Google Scholar]
  32. van der Lee TAJ, van Gent-Pelzer MPE, Jonkheer EM, Brankovics B, Houwers IM et al. An efficient triplex TaqMan quantitative PCR to detect a blackleg-causing lineage of Pectobacterium brasiliense in potato based on a pangenome analysis. Microorganisms 2023; 11:2080 [View Article] [PubMed]
    [Google Scholar]
  33. Blom N, Gorkink-Smits P, Landman M, de Bilt J van, Vogelaar M et al. Ralstonia solanacearum (phylotype II) isolated from Rosa spp. in the Netherlands is closely related to phylotype II isolates from other sources in the Netherlands and is virulent on potato. In Review 2024 [View Article]
    [Google Scholar]
  34. Sayers E. E-Utilities Quick Start National Center for Biotechnology Information (US); 2018
    [Google Scholar]
  35. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  37. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  38. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49:D344–D354 [View Article] [PubMed]
    [Google Scholar]
  39. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  40. Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J et al. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res 2023; 51:D389–D394 [View Article] [PubMed]
    [Google Scholar]
  41. Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation, storage and exploration of pan-genomic data. Bioinformatics 2016; 32:i487–i493 [View Article] [PubMed]
    [Google Scholar]
  42. Jonkheer EM, van Workum D-JM, Sheikhizadeh Anari S, Brankovics B, de Haan JR et al. PanTools v3: functional annotation, classification and phylogenomics. Bioinformatics 2022; 38:4403–4405 [View Article] [PubMed]
    [Google Scholar]
  43. Sheikhizadeh Anari S, de Ridder D, Schranz ME, Smit S. Efficient inference of homologs in large eukaryotic pan-proteomes. BMC Bioinformatics 2018; 19:340 [View Article] [PubMed]
    [Google Scholar]
  44. Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006; 22:1600–1607 [View Article] [PubMed]
    [Google Scholar]
  45. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  46. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004; 20:289–290 [View Article] [PubMed]
    [Google Scholar]
  47. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article]
    [Google Scholar]
  48. Wang L-G, Lam TT-Y, Xu S, Dai Z, Zhou L et al. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol Biol Evol 2020; 37:599–603 [View Article] [PubMed]
    [Google Scholar]
  49. Xu S, Li L, Luo X, Chen M, Tang W et al. Ggtree : a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 2022; 1:e56 [View Article]
    [Google Scholar]
  50. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article]
    [Google Scholar]
  51. Camargo AP, Roux S, Schulz F, Babinski M, Xu Y et al. Identification of mobile genetic elements with genomad. Nat Biotechnol 20231–10 [View Article]
    [Google Scholar]
  52. Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021; 39:578–585 [View Article]
    [Google Scholar]
  53. Tesson F, Hervé A, Mordret E, Touchon M, d’Humières C et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 2022; 13:2561 [View Article] [PubMed]
    [Google Scholar]
  54. Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  55. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  56. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  57. Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 2008; 11:472–477 [View Article] [PubMed]
    [Google Scholar]
  58. Bobay L-M, Rocha EPC, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol 2013; 30:737–751 [View Article] [PubMed]
    [Google Scholar]
  59. Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ et al. ICTV virus taxonomy profile: potyviridae. J Gen Virol 2017; 98:352–354 [View Article] [PubMed]
    [Google Scholar]
  60. Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA 1999; 96:2192–2197 [View Article] [PubMed]
    [Google Scholar]
  61. Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol 2011; 1:298–303 [View Article] [PubMed]
    [Google Scholar]
  62. Moura de Sousa JA, Pfeifer E, Touchon M, Rocha EPC. Causes and consequences of bacteriophage diversification via genetic exchanges across lifestyles and bacterial taxa. Mol Biol Evol 2021; 38:2497–2512 [View Article] [PubMed]
    [Google Scholar]
  63. Kupczok A, Bailey ZM, Refardt D, Wendling CC. Co-transfer of functionally interdependent genes contributes to genome mosaicism in lambdoid phages. Microb Genom 2022; 8:000915 [View Article] [PubMed]
    [Google Scholar]
  64. Holtappels D, Alfenas-Zerbini P, Koskella B. Drivers and consequences of bacteriophage host range. FEMS Microbiol Rev 2023; 47:fuad038 [View Article] [PubMed]
    [Google Scholar]
  65. Ranjani P, Gowthami Y, Gnanamanickam S, Palani P. Bacteriophages: a new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. MBTL 2018; 46:346–359 [View Article]
    [Google Scholar]
  66. Mohammed M, Casjens SR, Millard AD, Harrison C, Gannon L et al. Genomic analysis of anderson typing phages of Salmonella typhimrium: towards understanding the basis of bacteria-phage interaction. Sci Rep 2023; 13:10484 [View Article] [PubMed]
    [Google Scholar]
  67. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of host-phage interactions. Proc Natl Acad Sci USA 2011; 108:E288–E297 [View Article] [PubMed]
    [Google Scholar]
  68. Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V et al. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965 [View Article] [PubMed]
    [Google Scholar]
  69. Sharma V, Hünnefeld M, Luthe T, Frunzke J. Systematic analysis of prophage elements in actinobacterial genomes reveals a remarkable phylogenetic diversity. Sci Rep 2023; 13:4410 [View Article]
    [Google Scholar]
  70. Costa AR, Monteiro R, Azeredo J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci Rep 2018; 8:15346 [View Article] [PubMed]
    [Google Scholar]
  71. Greenrod STE, Stoycheva M, Elphinstone J, Friman V-P. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 2022; 23:689 [View Article] [PubMed]
    [Google Scholar]
  72. Mottawea W, Duceppe M-O, Dupras AA, Usongo V, Jeukens J et al. Salmonella enterica prophage sequence profiles reflect genome diversity and can be used for high discrimination subtyping. Front Microbiol 2018; 9:836 [View Article] [PubMed]
    [Google Scholar]
  73. Bellieny-Rabelo D, Tanui CK, Miguel N, Kwenda S, Shyntum DY et al. Transcriptome and comparative genomics analyses reveal new functional insights on key determinants of pathogenesis and interbacterial competition in Pectobacterium and Dickeya spp. Appl Environ Microbiol 2019; 85:e02050-18 [View Article] [PubMed]
    [Google Scholar]
  74. Coupat-Goutaland B, Bernillon D, Guidot A, Prior P, Nesme X et al. Ralstonia solanacearum virulence increased following large interstrain gene transfers by natural transformation. Mol Plant Microbe Interact 2011; 24:497–505 [View Article] [PubMed]
    [Google Scholar]
  75. Jacobs JM, Babujee L, Meng F, Milling A, Allen C. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 2012; 3:e00114-12 [View Article] [PubMed]
    [Google Scholar]
  76. Vanga BR, Ramakrishnan P, Butler RC, Toth IK, Ronson CW et al. Mobilization of horizontally acquired island 2 is induced in planta in the phytopathogen Pectobacterium atrosepticum SCRI1043 and involves the putative relaxase ECA0613 and quorum sensing. Environ Microbiol 2015; 17:4730–4744 [View Article] [PubMed]
    [Google Scholar]
  77. Panda P, Vanga BR, Lu A, Fiers M, Fineran PC et al. Pectobacterium atrosepticum and Pectobacterium carotovorum harbor distinct, independently acquired integrative and conjugative elements encoding coronafacic acid that enhance virulence on potato stems. Front Microbiol 2016; 7:397 [View Article] [PubMed]
    [Google Scholar]
  78. Pedersen JS, Carstens AB, Rothgard MM, Roy C, Viry A et al. A novel genus of Pectobacterium bacteriophages display broad host range by targeting several species of Danish soft rot isolates. Virus Res 2024; 347:199435 [View Article] [PubMed]
    [Google Scholar]
  79. Kauffman KM, Chang WK, Brown JM, Hussain FA, Yang J et al. Resolving the structure of phage-bacteria interactions in the context of natural diversity. Nat Commun 2022; 13:372 [View Article] [PubMed]
    [Google Scholar]
  80. Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T et al. A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture?. Antibiotics 2020; 9:493 [View Article]
    [Google Scholar]
  81. Czajkowski R, Ozymko Z, de Jager V, Siwinska J, Smolarska A et al. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One 2015; 10:e0119812 [View Article] [PubMed]
    [Google Scholar]
  82. Muturi P, Yu J, Maina AN, Kariuki S, Mwaura FB et al. Bacteriophages isolated in China for the control of Pectobacterium carotovorum causing potato soft rot in Kenya. Virol Sin 2019; 34:287–294 [View Article] [PubMed]
    [Google Scholar]
  83. Lee S, Vu N-T, Oh E-J, Rahimi-Midani A, Thi T-N et al. Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phiPccP-1 in Kimchi Cabbage. Microorganisms 2021; 9:779 [View Article] [PubMed]
    [Google Scholar]
  84. Zaczek-Moczydłowska MA, Young GK, Trudgett J, Plahe C, Fleming CC et al. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One 2020; 15:e0230842 [View Article] [PubMed]
    [Google Scholar]
  85. McKenna F, El-Tarabily KA, Hardy G, Dell B. Novel in vivo use of a polyvalent streptomyces phage to disinfest streptomyces scabies-infected seed potatoes. Plant Pathol 2001; 50:666–675 [View Article]
    [Google Scholar]
  86. Czajkowski R, Ozymko Z, Lojkowska E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. Plant Pathol 2014758–772
    [Google Scholar]
  87. Carstens AB, Djurhuus AM, Kot W, Jacobs-Sera D, Hatfull GF et al. Unlocking the potential of 46 new bacteriophages for biocontrol of Dickeya Solani. Viruses 2018; 10:621 [View Article] [PubMed]
    [Google Scholar]
  88. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010; 8:317–327 [View Article] [PubMed]
    [Google Scholar]
  89. LeRoux M, Laub MT. Toxin-antitoxin systems as phage defense elements. Annu Rev Microbiol 2022; 76:21–43 [View Article] [PubMed]
    [Google Scholar]
  90. Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol 2013; 11:675–687 [View Article] [PubMed]
    [Google Scholar]
  91. Owen SV, Wenner N, Dulberger CL, Rodwell EV, Bowers-Barnard A et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 2021; 29:1620–1633 [View Article] [PubMed]
    [Google Scholar]
  92. Morgan T, Rezende RR de, Lima TTM, Souza F de O, Alfenas-Zerbini P. Genomic analysis unveils the pervasiveness and diversity of prophages infecting Erwinia species. Pathogens 2022; 12:44 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001392
Loading
/content/journal/mgen/10.1099/mgen.0.001392
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error