1887

Abstract

is a genus of organohalide-respiring bacteria that is recognized for its fastidious growth using reductive dehalogenases (RDases). In the SC05 culture, however, a population also mineralizes dichloromethane (DCM) produced by chloroform dechlorination using the cassette, just downstream of its active RDase. A closed genome of this DCM-mineralizing lineage has previously evaded assembly. Here, we present the genomes of two novel strains, each of which was assembled from the metagenome of a distinct subculture from SC05. A pangenomic analysis of the genus, including RDase synteny and phylogenomics, reveals at least five species of based on average nucleotide identity, RDase and core gene synteny, as well as differential functional genes. An integration hotspot is also pinpointed in the genome, in which many recombinase islands have accumulated. This nested recombinase island encodes the active RDase and cassette in both SC05 genomes, indicating the transfer of key functional genes between species of . Horizontal gene transfer between these two novel strains has implications for the evolutionary history within the SC05 subcultures and of the genus as a whole, especially regarding adaptation to anthropogenic chemicals.

Funding
This study was supported by the:
  • Canada Research Chairs
    • Principle Award Recipient: ElizabethA. Edwards
  • Canada Research Chairs
    • Principle Award Recipient: RadhakrishnanMahadevan
  • Genome Canada (Award 285MPR)
    • Principle Award Recipient: RadhakrishnanMahadevan
  • Genome Canada (Award 285MPR)
    • Principle Award Recipient: ElizabethA. Edwards
  • Natural Science and Engineering Research Council (NSERC) (Award Canada Graduate Scholarship)
    • Principle Award Recipient: OliviaBulka
  • Natural Science and Engineering Research Council (NSERC) (Award Discovery grant)
    • Principle Award Recipient: ElizabethA. Edwards
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001324
2024-11-20
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/11/mgen001324.html?itemId=/content/journal/mgen/10.1099/mgen.0.001324&mimeType=html&fmt=ahah

References

  1. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W et al. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 1998; 169:313–321 [View Article]
    [Google Scholar]
  2. Holliger C, Schraa G, Stams AJM, Zehnder AJB. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 1993; 59:2991–2997 [View Article] [PubMed]
    [Google Scholar]
  3. Wild A, Hermann R, Leisinger T. Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 1996; 7:507–511 [View Article] [PubMed]
    [Google Scholar]
  4. Sun B, Griffin BM, Ayala-del-Rı́o HL, Hashsham SA, Tiedje JM. Microbial Dehalorespiration with 1,1,1-Trichloroethane. Science 2002; 298:1023–1025 [View Article]
    [Google Scholar]
  5. Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H et al. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120325 [View Article] [PubMed]
    [Google Scholar]
  6. Soder-Walz JM, Wasmund K, Deobald D, Vicent T, Adrian L et al. Respiratory protein interactions in Dehalobacter sp. strain 8M revealed through genomic and native proteomic analyses. Environ Microbiol 2023; 25:2604–2620 [View Article] [PubMed]
    [Google Scholar]
  7. Wong YK, Holland SI, Ertan H, Manefield M, Lee M. Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration. Environ Microbiol 2016; 18:3092–3105 [View Article] [PubMed]
    [Google Scholar]
  8. Alfán-Guzmán R, Ertan H, Manefield M, Lee M. Isolation and characterization of Dehalobacter sp. strain TeCB1 including identification of TcbA: a novel tetra- and trichlorobenzene reductive dehalogenase. Front Microbiol 2017; 8:558 [View Article] [PubMed]
    [Google Scholar]
  9. Grostern A, Duhamel M, Dworatzek S, Edwards EA. Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 2010; 12:1053–1060 [View Article] [PubMed]
    [Google Scholar]
  10. Grostern A, Chan WWM, Edwards EA. 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 2009; 43:6799–6807 [View Article] [PubMed]
    [Google Scholar]
  11. van Doesburg W, van Eekert MHA, Middeldorp PJM, Balk M, Schraa G et al. Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 2005; 54:87–95 [View Article] [PubMed]
    [Google Scholar]
  12. Alfán-Guzmán R, Ertan H, Manefield M, Lee M. Genome sequence of Dehalobacter sp. strain TeCB1, able to respire chlorinated benzenes. Genome Announc 2017; 5:e01681-16 [View Article] [PubMed]
    [Google Scholar]
  13. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H et al. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Phil Trans R Soc B 2013; 368:20120322 [View Article]
    [Google Scholar]
  14. Molenda O, Puentes Jácome LA, Cao X, Nesbø CL, Tang S et al. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. Environ Sci Process Impacts 2020; 22:663–678 [View Article] [PubMed]
    [Google Scholar]
  15. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304 [View Article] [PubMed]
    [Google Scholar]
  16. Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 2005; 3:679–687 [View Article] [PubMed]
    [Google Scholar]
  17. Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 2008; 105:10039–10044 [View Article] [PubMed]
    [Google Scholar]
  18. Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707–735 [View Article] [PubMed]
    [Google Scholar]
  19. Treangen TJ, Rocha EPC. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 2011; 7:e1001284 [View Article] [PubMed]
    [Google Scholar]
  20. Müller TA, Werlen C, Spain J, Van Der Meer JR. Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ Microbiol 2003; 5:163–173 [View Article] [PubMed]
    [Google Scholar]
  21. Morson N, Molenda O, Picott KJ, Richardson RE, Edwards EA. Long-term survival of Dehalococcoides mccartyi strains in mixed cultures under electron acceptor and ammonium limitation. FEMS Microbes 2022; 3:xtac021 [View Article] [PubMed]
    [Google Scholar]
  22. Herrick JB, Stuart-Keil KG, Ghiorse WC, Madsen EL. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl Environ Microbiol 1997; 63:2330–2337 [View Article] [PubMed]
    [Google Scholar]
  23. Sentchilo VS, Perebituk AN, Zehnder AJ, van der Meer JR. Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated sites in Belarus. . Appl Environ Microbiol 2000; 66:2842–2852 [View Article] [PubMed]
    [Google Scholar]
  24. Regeard C, Maillard J, Dufraigne C, Deschavanne P, Holliger C. Indications for acquisition of reductive dehalogenase genes through horizontal gene transfer by Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 2005; 71:2955–2961 [View Article] [PubMed]
    [Google Scholar]
  25. Tang S, Wang PH, Higgins SA, Löffler FE, Edwards EA. Sister Dehalobacter genomes reveal specialization in organohalide respiration and recent strain differentiation likely driven by chlorinated substrates. Front Microbiol 2016; 7:1–14 [View Article]
    [Google Scholar]
  26. Kruse T, Maillard J, Goodwin L, Woyke T, Teshima H et al. Complete genome sequence of Dehalobacter restrictus PER-K23(T.). Stand Genomic Sci 2013; 8:375–388 [View Article] [PubMed]
    [Google Scholar]
  27. Murdoch RW, Chen G, Kara Murdoch F, Mack EE, Villalobos Solis MI et al. Identification and widespread environmental distribution of a gene cassette implicated in anaerobic dichloromethane degradation. Glob Chang Biol 2022; 28:2396–2412 [View Article] [PubMed]
    [Google Scholar]
  28. Bulka O, Picott K, Mahadevan R, Edwards EA. From mec cassette to rdhA: a key Dehalobacter genomic neighborhood in a chloroform and dichloromethane–transforming microbial consortium. Appl Environ Microbiol 2024; 90:1–24 [View Article]
    [Google Scholar]
  29. Bulka O, Webb J, Dworatzek S, Mahadevan R, Edwards EA. A multifunctional Dehalobacter? Tandem chloroform and dichloromethane degradation in a mixed microbial culture. Environ Sci Technol 2023; 57:19912–19920 [View Article] [PubMed]
    [Google Scholar]
  30. Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE. Dichloromethane fermentation by a Dehalobacter sp. in an enrichment culture derived from pristine river sediment. Appl Environ Microbiol 2012; 78:1288–1291 [View Article] [PubMed]
    [Google Scholar]
  31. Lee M, Low A, Zemb O, Koenig J, Michaelsen A et al. Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 2012; 14:883–894 [View Article] [PubMed]
    [Google Scholar]
  32. Kleindienst S, Higgins SA, Tsementzi D, Chen G, Konstantinidis KT et al. Candidatus Dichloromethanomonas elyunquensis” gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Syst Appl Microbiol 2017; 40:150–159 [View Article] [PubMed]
    [Google Scholar]
  33. Holland SI, Edwards RJ, Ertan H, Wong YK, Russell TL et al. Whole genome sequencing of a novel, dichloromethane-fermenting Peptococcaceae from an enrichment culture. PeerJ 2019; 7:e7775 [View Article] [PubMed]
    [Google Scholar]
  34. Wang H, Yu R, Webb J, Dollar P, Freedman DL. Anaerobic biodegradation of chloroform and dichloromethane with a Dehalobacter enrichment culture. Appl Environ Microbiol 2022; 88:e0197021 [View Article] [PubMed]
    [Google Scholar]
  35. Bulka O, Edwards EA. Metagenomic sequences from anaerobic chloroform and dichloromethane degrading microbial communities. Microbiol Resour Announc 2024; 13:e0039124 [View Article] [PubMed]
    [Google Scholar]
  36. Bulka O, Edwards EA. Two distinct Dehalobacter metagenome-assembled genomes from anaerobic chloroform and dichloromethane degrading consortia. Microbiol Resour Announc 2024e0080324 [View Article] [PubMed]
    [Google Scholar]
  37. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 2016; 32:1009–1015 [View Article] [PubMed]
    [Google Scholar]
  38. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG et al. Anvi’o: an advanced analysis and visualization platform for’omics data. PeerJ 2015; 3:e1319 [View Article] [PubMed]
    [Google Scholar]
  39. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  40. Shaiber A, Willis AD, Delmont TO, Roux S, Chen LX et al. Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome. Genome Biol 2020; 21:292 [View Article] [PubMed]
    [Google Scholar]
  41. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  42. Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol 2016; 34:1256–1263 [View Article] [PubMed]
    [Google Scholar]
  43. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  44. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  45. Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 2020; 38:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  46. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  47. Cumsille A, Durán RE, Rodríguez-Delherbe A, Saona-Urmeneta V, Cámara B et al. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLoS Comput Biol 2023; 19:e1010998 [View Article] [PubMed]
    [Google Scholar]
  48. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  49. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  50. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  51. Morel B, Kozlov AM, Stamatakis A, Szöllősi GJ. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol Biol Evol 2020; 37:2763–2774 [View Article] [PubMed]
    [Google Scholar]
  52. Penel S, Menet H, Tricou T, Daubin V, Tannier E. Thirdkind: displaying phylogenetic encounters beyond 2-level reconciliation. Bioinformatics 2022; 38:2350–2352 [View Article] [PubMed]
    [Google Scholar]
  53. Gilchrist CLM, Chooi YH. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  54. Cury J, Abby SS, Doppelt-Azeroual O, Néron B, Rocha EPC. Identifying conjugative plasmids and integrative conjugative elements with CONJscan. In Methods in Molecular Biology 2020 pp 265–283 [View Article]
    [Google Scholar]
  55. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080 [View Article] [PubMed]
    [Google Scholar]
  56. Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, de la Cruz F et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 2014; 42:5715–5727 [View Article] [PubMed]
    [Google Scholar]
  57. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  58. Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP et al. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 2022; 50:3155–3168 [View Article] [PubMed]
    [Google Scholar]
  59. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  60. Puentes Jacome LA. Anaerobic Biodegradation of Chlorinated Benzenes and Hexachlorocyclohexane by Mixed Microbial Cultures Derived from Contaminated Field Sites University of Toronto; 2019
    [Google Scholar]
  61. Wang J, Qi K, Bai X, Wu Z, Kang W et al. Characterization of integrative and conjugative elements carrying antibiotic resistance genes of Streptococcus suis isolated in China. Front Microbiol 2022; 13:1074844 [View Article]
    [Google Scholar]
  62. Calcutt MJ, Foecking MF. An excision-competent and exogenous mosaic transposon harbors the tetM gene in multiple Mycoplasma hominis lineages. Antimicrob Agents Chemother 2015; 59:6665–6666 [View Article] [PubMed]
    [Google Scholar]
  63. Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720–760 [View Article] [PubMed]
    [Google Scholar]
  64. Gribble GW. Naturally occurring organohalogen compounds - a comprehensive update. Acc Chem Res 2010; 31:613 [View Article]
    [Google Scholar]
  65. Tang S, Edwards EA. Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120318 [View Article] [PubMed]
    [Google Scholar]
  66. Jugder BE, Bohl S, Lebhar H, Healey RD, Manefield M et al. A bacterial chloroform reductive dehalogenase: purification and biochemical characterization. Microb Biotechnol 2017; 10:1640–1648 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001324
Loading
/content/journal/mgen/10.1099/mgen.0.001324
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error