1887

Abstract

El Niño events, the warm phase of the El Niño Southern Oscillation, facilitate the movement of warm surface waters eastwards across the Pacific Ocean. Marine organisms transported by these waters can act as biological corridors for water-borne bacteria with attachment abilities. El Niño events have been hypothesized as driving the recent emergence of (Vp) variants, marine bacterium causing gastroenteritis, in South America, but the lack of a robust methodological framework limited any further exploration. Here, we introduce two new analysis approaches to explore Vp dynamics in South America, which will be central to uncovering Vp dynamics in the future. Distributed non-linear lag models found that strong El Niño events increase the relative probability of Vp detection in Peru, with a 3–4-month lag time. Machine learning found that the presence of a specific gene () involved in attachment to plankton in a pandemic Vp clone in South America was temporally associated with strong El Niño events, offering a possible strategy for survival over long-range dispersal, such as that offered by El Niño events. Robust surveillance of marine pathogens and methodological development are necessary to produce resolute conclusions on the effect of El Niño events on water-borne diseases.

Funding
This study was supported by the:
  • HORIZON EUROPE European Research Council (Award 101057554)
    • Principle Award Recipient: JaimeMartinez-Urtaza
  • Generalitat de Catalunya (Award 2021 SGR 00526)
    • Principle Award Recipient: JaimeMartinez-Urtaza
  • Ministerio de Ciencia e Innovación (Award PID2021-127107NB-I00)
    • Principle Award Recipient: JaimeMartinez-Urtaza
  • Natural Environment Research Council (Award (NE/S007210/1)
    • Principle Award Recipient: AmyMarie Campbell
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001317
2024-11-08
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/11/mgen001317.html?itemId=/content/journal/mgen/10.1099/mgen.0.001317&mimeType=html&fmt=ahah

References

  1. Trinanes J, Martinez-Urtaza J. Future scenarios of risk of Vibrio infections in a warming planet: a global mapping study. Lancet Planet Health 2021; 5:e426–e435 [View Article] [PubMed]
    [Google Scholar]
  2. Martinez-Urtaza J, Trinanes J, Gonzalez-Escalona N, Baker-Austin C. Is El Niño a long-distance corridor for waterborne disease?. Nat Microbiol 2016; 1:16018 [View Article] [PubMed]
    [Google Scholar]
  3. Ramírez IJ, Lee J. Deconstructing the spatial effects of El Niño and vulnerability on cholera rates in Peru: wavelet and GIS analyses. Spat Spatiotemporal Epidemiol 2022; 40:100474 [View Article] [PubMed]
    [Google Scholar]
  4. Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol 2005; 7:860–873 [View Article] [PubMed]
    [Google Scholar]
  5. Diner RE, Kaul D, Rabines A, Zheng H, Steele JA et al. Pathogenic Vibrio species are associated with distinct environmental niches and planktonic taxa in southern California (USA) aquatic microbiomes. mSystems 2021; 6:e0057121 [View Article] [PubMed]
    [Google Scholar]
  6. Vezzulli L, Pruzzo C, Huq A, Colwell RR. Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ Microbiol Rep 2010; 2:27–33 [View Article] [PubMed]
    [Google Scholar]
  7. Huq A, Sack RB, Nizam A, Longini IM, Nair GB et al. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 2005; 71:4645–4654 [View Article] [PubMed]
    [Google Scholar]
  8. Martinez-Urtaza J, Huapaya B, Gavilan RG, Blanco-Abad V, Ansede-Bermejo J et al. Emergence of Asiatic Vibrio diseases in South America in phase with El Niño. Epidemiology 2008; 19:829–837 [View Article] [PubMed]
    [Google Scholar]
  9. Logar-Henderson C, Ling R, Tuite AR, Fisman DN. Effects of large-scale oceanic phenomena on non-cholera vibriosis incidence in the United States: implications for climate change. Epidemiol Infect 2019; 147:e243 [View Article]
    [Google Scholar]
  10. Jiang J, Zhou H, Zhang T, Yao C, Du D et al. Machine learning to predict dynamic changes of pathogenic Vibrio spp. abundance on microplastics in marine environment. Environ Pollut 2022; 305:119257 [View Article]
    [Google Scholar]
  11. Namadi P, Deng Z. Deep learning-based ensemble modeling of Vibrio parahaemolyticus concentration in marine environment. Environ Monit Assess 2023; 195:229 [View Article]
    [Google Scholar]
  12. Lian T, Wang J, Chen D, Liu T, Wang D. A strong 2023/24 El Niño is staged by tropical Pacific Ocean heat content buildup. Ocean-Land-Atmos Res 2023; 2:0011 [View Article]
    [Google Scholar]
  13. Zhang T, Hoell A, Perlwitz J, Eischeid J, Murray D et al. Towards probabilistic multivariate ENSO monitoring. Geophys Res Lett 2019; 46:10532–10540 [View Article]
    [Google Scholar]
  14. United Nations Department of International Economic. World population prospects. UN; 1978
  15. World Bank Group Climate change knowledge portal; 2023 https://climateknowledgeportal.worldbank.org accessed 19 July 2023
  16. RStudio Team RStudio: integrated development for R. RStudio, Inc., Boston, MA; 2015 http://www.rstudio.com
  17. Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 2011; 43:1
    [Google Scholar]
  18. Wood S, Wood MS. Package ‘mgcv. R package version 2015; 1:729
    [Google Scholar]
  19. Carstensen B, Plummer M, Laara E, Hills M, Carstensen MB. Package ‘Epi’. A package for statistical analysis in epidemiology. CRAN; 2013
  20. Grolemund G, Wickham H. Dates and times made easy with lubridate. J Stat Softw 2011; 40:1–25 [View Article]
    [Google Scholar]
  21. Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med 2014; 33:881–899 [View Article] [PubMed]
    [Google Scholar]
  22. Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the evaluation of public health interventions: a tutorial. Int J Epidemiol 2017; 46:348–355 [View Article] [PubMed]
    [Google Scholar]
  23. Petit RA, Read TD, Segata N. Bactopia: a flexible pipeline for complete analysis of bacterial genomes. mSystems 2020; 5:e00190-20 [View Article] [PubMed]
    [Google Scholar]
  24. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  25. Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 2005; 22:1185–1192 [View Article] [PubMed]
    [Google Scholar]
  26. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in 732 Bayesian phylogenetics using tracer 1.7. Syst Biol 2018; 67:901–904
    [Google Scholar]
  27. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  28. Campbell AM, Gavilan RG, Abanto Marin M, Yang C, Hauton C et al. Evolutionary dynamics of the successful expansion of pandemic Vibrio parahaemolyticus ST3 in Latin America. Nat Commun 2024; 15:7828 [View Article] [PubMed]
    [Google Scholar]
  29. NOAA (National Oceanic and Atmospheric Administration) Extended reconstructed sea surface temperature (ERSST.v5). National Centers for Environmental Information; 2021 https://www.ncei.noaa.gov/products/extended-reconstructed-sst
  30. NOAA (National Oceanic and Atmospheric Administration) Laboratory for satellite altimetry: sea level rise; 2022 www.star.nesdis.noaa.gov/sod/lsa/SeaLevelRise/LSA_SLR_timeseries_global.php
  31. Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB et al. Global Historical Climatology Network - Monthly (GHCN-M), Version 3 NOAA National Centers for Environmental Information; 2011 [View Article]
    [Google Scholar]
  32. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A et al. The ERA5 global reanalysis. Quart J Royal Meteoro Soc 2020; 146:1999–2049 [View Article]
    [Google Scholar]
  33. Good SA, Martin MJ, Rayner NA. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. JGR Oceans 2013; 118:6704–6716 [View Article]
    [Google Scholar]
  34. Gouretski V, Cheng L. Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J Atmos Ocean Technol 2020; 37:841–855 [View Article]
    [Google Scholar]
  35. FishStatJ FAO. A Tool for Fishery Statistics Analysis Rome, Italy: FAO Fisheries and Aquaculture Department, FIPS–Statistics and Information; 2017
    [Google Scholar]
  36. Fu S, Wang W, Wang Q, He F, Hao J et al. Surveillance of enteric pathogens in imported seafood and environmental surfaces in five seafood markets before the outbreak of COVID-19. Biosafety Health 2021; 3:183–186 [View Article]
    [Google Scholar]
  37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. Scikit-learn: machine learning in python. J Mach Learn Res 2011; 12:2825–2830
    [Google Scholar]
  38. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell Res 2002; 16:321–357 [View Article]
    [Google Scholar]
  39. Kodama T, Hiyoshi H, Okada R, Matsuda S, Gotoh K et al. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 2015; 17:183–190 [View Article] [PubMed]
    [Google Scholar]
  40. Meparambu Prabhakaran D, Ramamurthy T, Thomas S. Genetic and virulence characterisation of Vibrio parahaemolyticus isolated from Indian coast. BMC Microbiol 2020; 20:62 [View Article] [PubMed]
    [Google Scholar]
  41. Zhou X, Gewurz BE, Ritchie JM, Takasaki K, Greenfeld H et al. A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep 2013; 3:1690–1702 [View Article] [PubMed]
    [Google Scholar]
  42. Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 2011; 6:e20275 [View Article] [PubMed]
    [Google Scholar]
  43. Almagro-Moreno S. The origins of pathogenesis. Nat Rev Microbiol 2024; 22:259 [View Article] [PubMed]
    [Google Scholar]
  44. Kirn TJ, Jude BA, Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 2005; 438:863–866 [View Article] [PubMed]
    [Google Scholar]
  45. Grossart HP, Dziallas C, Leunert F, Tang KW. Bacteria dispersal by hitchhiking on zooplankton. Proc Natl Acad Sci USA 2010; 107:11959–11964 [View Article]
    [Google Scholar]
  46. Nasu H, Iida T, Sugahara T, Yamaichi Y, Park KS et al. A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 2000; 38:2156–2161 [View Article] [PubMed]
    [Google Scholar]
  47. Aronés K, Ayón P, Hirche HJ, Schwamborn R. Hydrographic structure and zooplankton abundance and diversity off Paita, northern Peru (1994 to 2004) — ENSO effects, trends and changes. J Marine Syst 2009; 78:582–598 [View Article]
    [Google Scholar]
  48. Chavez FP, Strutton PG, Friederich GE, Feely RA, Feldman GC et al. Biological and chemical response of the equatorial Pacific ocean to the 1997-98 El Nino. Science 1999; 286:2126–2131 [View Article] [PubMed]
    [Google Scholar]
  49. Aguilar DG, Flores KA, Chang F, Olguín LQ, Merino PV. Impacto de la variación oceanográfica estacional e interanual sobre los ensambles de microfitoplancton, mesozooplancton, ictioplancton y macrozoobentos de dos áreas costeras del norte del perú entre 1994 y 2002. Boletín Instituto del Mar del Perú 2005; 22:66
    [Google Scholar]
  50. Conde A, Hurtado M, Prado M. Phytoplankton response to a weak El Niño event. Ecol Indicators 2018; 95:394–404 [View Article]
    [Google Scholar]
  51. Cenzer M, M’Gonigle LK. Local adaptation in dispersal in multi-resource landscapes. Evolution 2019; 73:648–660 [View Article] [PubMed]
    [Google Scholar]
  52. Biek R, Real LA. The landscape genetics of infectious disease emergence and spread. Mol Ecol 2010; 19:3515–3531 [View Article] [PubMed]
    [Google Scholar]
  53. Abanto M, Gavilan RG, Baker-Austin C, Gonzalez-Escalona N, Martinez-Urtaza J. Global expansion of Pacific northwest Vibrio parahaemolyticus sequence type 36. Emerg Infect Dis 2020; 26:323–326 [View Article] [PubMed]
    [Google Scholar]
  54. Cai W, Santoso A, Collins M, Dewitte B, Karamperidou C et al. Changing El Niño–southern oscillation in a warming climate. Nat Rev Earth Environ 2021; 2:628–644 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001317
Loading
/content/journal/mgen/10.1099/mgen.0.001317
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error