1887

Abstract

Climate warming has led to glacier retreat worldwide. Studies on the taxonomy and functions of glacier microbiomes help us better predict their response to glacier melting. Here, we used shotgun metagenomic sequencing to study the microbial functional potential in different cryospheric habitats, i.e. surface snow, supraglacial and subglacial sediments, subglacial ice, proglacial stream water and recently deglaciated soils. The functional gene structure varied greatly among habitats, especially for snow, which differed significantly from all other habitats. Differential abundance analysis revealed that genes related to stress responses (e.g. chaperones) were enriched in ice habitat, supporting the fact that glaciers are a harsh environment for microbes. The microbial metabolic capabilities related to carbon and nitrogen cycling vary among cryospheric habitats. Genes related to auxiliary activities were overrepresented in the subglacial sediment, suggesting a higher genetic potential for the degradation of recalcitrant carbon (e.g., lignin). As for nitrogen cycling, genes related to nitrogen fixation were more abundant in barren proglacial soils, possibly due to the presence of Cyanobacteriota in this habitat. Our results deepen our understanding of microbial processes in glacial ecosystems, which are vulnerable to ongoing global warming, and they have implications for downstream ecosystems.

Funding
This study was supported by the:
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Award 310030_215119)
    • Principle Award Recipient: BeatFrey
  • Swiss Federal Institute for Forest, Snow and Landscape Research (Award 5231.00900.002.01)
    • Principle Award Recipient: BeatFrey
  • H2020 Marie Skłodowska-Curie Actions (Award 675546)
    • Principle Award Recipient: BeatFrey
  • China Scholarship Council (Award 201904910436)
    • Principle Award Recipient: MaomaoFeng
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001301
2024-10-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/10/mgen001301.html?itemId=/content/journal/mgen/10.1099/mgen.0.001301&mimeType=html&fmt=ahah

References

  1. Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol 2018; 94: [View Article] [PubMed]
    [Google Scholar]
  2. Liu Y, Ji M, Yu T, Zaugg J, Anesio AM et al. A genome and gene catalog of glacier microbiomes. Nat Biotechnol 2022; 40:1341–1348 [View Article] [PubMed]
    [Google Scholar]
  3. Anesio AM, Lutz S, Chrismas NAM, Benning LG. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 2017; 3:10 [View Article] [PubMed]
    [Google Scholar]
  4. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677–690 [View Article] [PubMed]
    [Google Scholar]
  5. Collins T, Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 2019; 103:2857–2871 [View Article] [PubMed]
    [Google Scholar]
  6. Cameron KA, Stibal M, Hawkings JR, Mikkelsen AB, Telling J et al. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ Microbiol 2017; 19:524–534 [View Article] [PubMed]
    [Google Scholar]
  7. Varliero G, Lebre PH, Frey B, Fountain AG, Anesio AM et al. Glacial water: a dynamic microbial medium. Microorganisms 2023; 11:1153 [View Article] [PubMed]
    [Google Scholar]
  8. Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B. High microbial activity on glaciers: importance to the global carbon cycle. Glob Change Biol 2009; 15:955–960 [View Article]
    [Google Scholar]
  9. Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A et al. Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res 2011; 116: [View Article]
    [Google Scholar]
  10. Yallop ML, Anesio AM, Perkins RG, Cook J, Telling J et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J 2012; 6:2302–2313 [View Article] [PubMed]
    [Google Scholar]
  11. Holland AT, Williamson CJ, Sgouridis F, Tedstone AJ, McCutcheon J et al. Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet). Biogeosciences 2019; 16:3283–3296 [View Article]
    [Google Scholar]
  12. Smith HJ, Foster RA, McKnight DM, Lisle JT, Littmann S et al. Microbial formation of labile organic carbon in Antarctic glacial environments. Nature Geosci 2017; 10:356–359 [View Article]
    [Google Scholar]
  13. Lutz S, Anesio AM, Edwards A, Benning LG. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ Microbiol 2017; 19:551–565 [View Article] [PubMed]
    [Google Scholar]
  14. Sanyal A, Antony R, Samui G, Thamban M. Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 2018; 208:32–42 [View Article] [PubMed]
    [Google Scholar]
  15. Boyd ES, Hamilton TL, Havig JR, Skidmore ML, Shock EL. Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol 2014; 80:6146–6153 [View Article]
    [Google Scholar]
  16. Hamilton TL, Peters JW, Skidmore ML, Boyd ES. Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J 2013; 7:1402–1412 [View Article] [PubMed]
    [Google Scholar]
  17. Mitchell AC, Lafrenière MJ, Skidmore ML, Boyd ES. Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology 2013; 41:855–858 [View Article]
    [Google Scholar]
  18. Harrold ZR, Skidmore ML, Hamilton TL, Desch L, Amada K et al. Aerobic and anaerobic thiosulfate oxidation by a cold-adapted, subglacial chemoautotroph. Appl Environ Microbiol 2015; 82:1486–1495 [View Article] [PubMed]
    [Google Scholar]
  19. Telling J, Boyd ES, Bone N, Jones EL, Tranter M et al. Rock comminution as a source of hydrogen for subglacial ecosystems. Nature Geosci 2015; 8:851–855 [View Article]
    [Google Scholar]
  20. Andy H, Martyn T, Andrew F, Mark O, John P et al. Glacial ecosystems. Concepts Synthesis 2008; 78:41–67 [View Article]
    [Google Scholar]
  21. Fountain AG, Walder JS. Water flow through temperate glaciers. Rev Geophys 1998; 36:299–328 [View Article]
    [Google Scholar]
  22. Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J 2016; 10:1625–1641 [View Article] [PubMed]
    [Google Scholar]
  23. Dieser M, Broemsen ELJE, Cameron KA, King GM, Achberger A et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J 2014; 8:2305–2316 [View Article] [PubMed]
    [Google Scholar]
  24. Wadham JL, Tranter M, Tulaczyk S, Sharp M. Subglacial methanogenesis: a potential climatic amplifier?. Glob Biogeochem Cycl 2008; 22: [View Article]
    [Google Scholar]
  25. Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT et al. Microbial abundance in surface ice on the Greenland Ice Sheet. Front Microbiol 2015; 6:225 [View Article] [PubMed]
    [Google Scholar]
  26. Stibal M, Telling J, Cook J, Mak KM, Hodson A et al. Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach. Microb Ecol 2012; 63:74–84 [View Article] [PubMed]
    [Google Scholar]
  27. Miteva V, Teacher C, Sowers T, Brenchley J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 2009; 11:640–656 [View Article] [PubMed]
    [Google Scholar]
  28. Bourquin M, Busi SB, Fodelianakis S, Peter H, Washburne A et al. The microbiome of cryospheric ecosystems. Nat Commun 2022; 13:3087 [View Article] [PubMed]
    [Google Scholar]
  29. Kayani MUR, Doyle SM, Sangwan N, Wang G, Gilbert JA et al. Metagenomic analysis of basal ice from an Alaskan glacier. Microbiome 2018; 6:123 [View Article] [PubMed]
    [Google Scholar]
  30. Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ et al. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 2013; 8:035003 [View Article]
    [Google Scholar]
  31. Kumar V, Kumar S, Singh D. Metagenomic insights into Himalayan glacial and kettle lake sediments revealed microbial community structure, function, and stress adaptation strategies. Extremophiles 2021; 26:3 [View Article] [PubMed]
    [Google Scholar]
  32. Gura C, Rogers SO. Metatranscriptomic and metagenomic analysis of biological diversity in Subglacial Lake Vostok (Antarctica). Biology 2020; 9:55 [View Article] [PubMed]
    [Google Scholar]
  33. Murakami T, Takeuchi N, Mori H, Hirose Y, Edwards A et al. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. Microbiome 2022; 10:50 [View Article] [PubMed]
    [Google Scholar]
  34. Feng M, Varliero G, Qi W, Stierli B, Edwards A et al. Microbial dynamics in soils of the Damma glacier forefield show succession in the functional genetic potential. Environ Microbiol 2023; 25:3116–3138 [View Article]
    [Google Scholar]
  35. Zumsteg A, Luster J, Göransson H, Smittenberg RH, Brunner I et al. Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol 2012; 63:552–564 [View Article] [PubMed]
    [Google Scholar]
  36. Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL et al. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 2011; 77:4778–4787 [View Article] [PubMed]
    [Google Scholar]
  37. Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 2005; 71:6986–6997 [View Article] [PubMed]
    [Google Scholar]
  38. Bernasconi SM, Bauder A, Bourdon B, Brunner I, Bünemann E et al. Chemical and biological gradients along the Damma glacier soil chronosequence, Switzerland. Vadose Zone J 2011; 10:867–883 [View Article]
    [Google Scholar]
  39. Menon M, Rousseva S, Nikolaidis NP, van Gaans P, Panagos P et al. SoilTrEC: a global initiative on critical zone research and integration. Environ Sci Pollut Res Int 2014; 21:3191–3195 [View Article] [PubMed]
    [Google Scholar]
  40. Zumsteg A, Bååth E, Stierli B, Zeyer J, Frey B. Bacterial and fungal community responses to reciprocal soil transfer along a temperature and soil moisture gradient in a glacier forefield. Soil Biol Biochem 2013; 61:121–132 [View Article]
    [Google Scholar]
  41. Rime T, Hartmann M, Brunner I, Widmer F, Zeyer J et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol Ecol 2015; 24:1091–1108 [View Article] [PubMed]
    [Google Scholar]
  42. Frey B, Varliero G, Qi W, Stierli B, Walthert L et al. Shotgun metagenomics of deep forest soil layers show evidence of altered microbial genetic potential for biogeochemical cycling. Front Microbiol 2022; 13:828977 [View Article] [PubMed]
    [Google Scholar]
  43. Andrews S. Fast QC: a quality control tool for high throughput sequence data; 2018 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  44. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  45. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  46. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 2010; 38:e132 [View Article] [PubMed]
    [Google Scholar]
  47. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–93 [View Article] [PubMed]
    [Google Scholar]
  48. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009; 37:D233–8 [View Article] [PubMed]
    [Google Scholar]
  49. Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 2019; 35:1040–1048 [View Article] [PubMed]
    [Google Scholar]
  50. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  51. Anwar MZ, Lanzen A, Bang-Andreasen T, Jacobsen CS. To assemble or not to resemble-A validated Comparative Metatranscriptomics Workflow (CoMW). Gigascience 2019; 8:giz096 [View Article] [PubMed]
    [Google Scholar]
  52. Frey B, Rast BM, Qi W, Stierli B, Brunner I. Long-term mercury contamination does not affect the microbial gene potential for C and N cycling in soils but enhances detoxification gene abundance. Front Microbiol 2022; 13:1034138 [View Article] [PubMed]
    [Google Scholar]
  53. Varliero G, Anesio AM, Barker GLA. A taxon-wise insight into rock weathering and nitrogen fixation functional profiles of proglacial systems. Front Microbiol 2021; 12:627437 [View Article] [PubMed]
    [Google Scholar]
  54. Nakata PA. The oxalic acid biosynthetic activity of Burkholderia mallei is encoded by a single locus. Microbiol Res 2011; 166:531–538 [View Article] [PubMed]
    [Google Scholar]
  55. El-Tarabily KA, Nassar AH, Sivasithamparam K. Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Appl Soil Ecol 2008; 39:161–171 [View Article]
    [Google Scholar]
  56. Frey B, Rieder SR, Brunner I, Plötze M, Koetzsch S et al. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol 2010; 76:4788–4796 [View Article] [PubMed]
    [Google Scholar]
  57. Olsson-Francis K, Boardman CP, Pearson VK, Schofield PF, Oliver A et al. A culture-independent and culture-dependent study of the bacterial community from the bedrock soil interface. AiM 2015; 05:842–857 [View Article]
    [Google Scholar]
  58. Wongfun N, Plötze M, Furrer G, Brandl H. Weathering of granite from the Damma glacier area: the contribution of cyanogenic bacteria. Geomicrobiol J 2014; 31:93–100 [View Article]
    [Google Scholar]
  59. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint 2013
    [Google Scholar]
  60. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–930 [View Article] [PubMed]
    [Google Scholar]
  61. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 2016; 7:11257 [View Article] [PubMed]
    [Google Scholar]
  62. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  63. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  64. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  65. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  66. R Core team R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2022 https://www.R-project.org
  67. de Mendiburu F. agricolae tutorial (Version 1.3-5). Universidad Nacional Agraria: La Molina, Peru; 2021
  68. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550 [View Article] [PubMed]
    [Google Scholar]
  69. Love M, Anders S, Huber W. Differential analysis of RNA-seq data at the gene level using the deseq2 package; 2013
  70. Paradis E, Blomberg S, Bolker B, Brown J, Claude J et al. Package ‘ape; 2019
  71. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P et al. vegan: Community Ecology Package (R package version 2.0. 2). n.d http://CRAN
  72. Cao Z, Li D, Han XJSXAES. The fungal to bacterial ratio in soil food webs, and its measurement; 2011; 314741–4748
  73. Clarke K, Gorely R. Primer v7 user manual/tutorial. PRIMER-E: Auckland, New Zealand; 2015
  74. Wickham H, Francois R, Henry L, Müller K. dplyr. useR! Conference 2014
    [Google Scholar]
  75. Wickham H. The split-apply-combine strategy for data analysis. J Stat Soft 2011; 40:29 [View Article]
    [Google Scholar]
  76. Wickham H. Reshaping data with the reshape package. J Stat Softw 2007; 21:1 [View Article]
    [Google Scholar]
  77. Wickham H. ggplot2. WIREs Computational Stats 2011; 3:180–185 [View Article]
    [Google Scholar]
  78. Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG et al. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 2009; 75:5121–5130 [View Article] [PubMed]
    [Google Scholar]
  79. Bowers RM, McCubbin IB, Hallar AG, Fierer N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 2012; 50:41–49 [View Article]
    [Google Scholar]
  80. Favet J, Lapanje A, Giongo A, Kennedy S, Aung Y-Y et al. Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME J 2013; 7:850–867 [View Article] [PubMed]
    [Google Scholar]
  81. Larose C, Berger S, Ferrari C, Navarro E, Dommergue A et al. Microbial sequences retrieved from environmental samples from seasonal arctic snow and meltwater from Svalbard, Norway. Extremophiles 2010; 14:205–212 [View Article] [PubMed]
    [Google Scholar]
  82. Liu K, Liu Y, Hu A, Wang F, Zhang Z et al. Fate of glacier surface snow-originating bacteria in the glacier-fed hydrologic continuums. Environ Microbiol 2021; 23:6450–6462 [View Article] [PubMed]
    [Google Scholar]
  83. Wilhelm L, Singer GA, Fasching C, Battin TJ, Besemer K. Microbial biodiversity in glacier-fed streams. ISME J 2013; 7:1651–1660 [View Article] [PubMed]
    [Google Scholar]
  84. Choudhari S, Lohia R, Grigoriev A. Comparative metagenome analysis of an Alaskan glacier. J Bioinform Comput Biol 2014; 12:1441003 [View Article] [PubMed]
    [Google Scholar]
  85. Simon C, Wiezer A, Strittmatter AW, Daniel R. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 2009; 75:7519–7526 [View Article] [PubMed]
    [Google Scholar]
  86. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol 2011; 2:93 [View Article] [PubMed]
    [Google Scholar]
  87. Frey B, Bühler L, Schmutz S, Zumsteg A, Furrer G. Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environ Res Lett 2013; 8:015033 [View Article]
    [Google Scholar]
  88. Donhauser J, Qi W, Bergk-Pinto B, Frey B. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Glob Chang Biol 2021; 27:1365–1386 [View Article] [PubMed]
    [Google Scholar]
  89. Perez-Mon C, Stierli B, Plötze M, Frey B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci Total Environ 2022; 807:150720 [View Article] [PubMed]
    [Google Scholar]
  90. Drake HL, Küsel K, Matthies C, Rosenberg E, DeLong EF et al. The Prokaryotes: Prokaryotic Physiology and Biochemistry 2013
    [Google Scholar]
  91. Maggiori C, Raymond-Bouchard I, Brennan L, Touchette D, Whyte L. MinION sequencing from sea ice cryoconites leads to de novo genome reconstruction from metagenomes. Sci Rep 2021; 11:21041 [View Article] [PubMed]
    [Google Scholar]
  92. Tranter M, Skidmore M, Wadham J. Hydrological controls on microbial communities in subglacial environments. Hydrol Process 2005; 19:995–998 [View Article]
    [Google Scholar]
  93. Holmström KM, Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15:411–421 [View Article] [PubMed]
    [Google Scholar]
  94. Gabbita SP, Robinson KA, Stewart CA, Floyd RA, Hensley K. Redox regulatory mechanisms of cellular signal transduction. Arch Biochem Biophys 2000; 376:1–13 [View Article] [PubMed]
    [Google Scholar]
  95. Hansell DA. Recalcitrant dissolved organic carbon fractions. Ann Rev Mar Sci 2013; 5:421–445 [View Article] [PubMed]
    [Google Scholar]
  96. Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ et al. Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 2009; 47:673–681 [View Article]
    [Google Scholar]
  97. Jill AM, Ann P, David TJ, Alexandra VT, James F et al. A contemporary microbially maintained subglacial ferrous “Ocean. Science 2009
    [Google Scholar]
  98. Rai A, Bhattacharjee A. Molecular profiling of microbial community structure and their CAZymes via metagenomics, from Tsomgo lake in the Eastern Himalayas. Arch Microbiol 2021; 203:3135–3146 [View Article] [PubMed]
    [Google Scholar]
  99. Kaushal G, Thakur M, Rai AK, Singh SP. A comprehensive metagenomic analysis framework revealing microbiome profile and potential for hydrocarbon degradation and carbohydrate metabolism in a Himalayan artificial lake. Sustainability 2022; 14:11455 [View Article]
    [Google Scholar]
  100. Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 2022; 50:D571–D577 [View Article] [PubMed]
    [Google Scholar]
  101. Milner AM, Khamis K, Battin TJ, Brittain JE, Barrand NE et al. Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci U S A 2017; 114:9770–9778 [View Article] [PubMed]
    [Google Scholar]
  102. Huss M, Hock R. Global-scale hydrological response to future glacier mass loss. Nature Clim Change 2018; 8:135–140 [View Article]
    [Google Scholar]
  103. Hood E, Battin TJ, Fellman J, O’Neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nature Geosci 2015; 8:91–96 [View Article]
    [Google Scholar]
  104. Fell SC, Carrivick JL, Cauvy-Fraunié S, Crespo-Pérez V, Hood E et al. Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nat Clim Chang 2021; 11:349–353 [View Article]
    [Google Scholar]
  105. Singer GA, Fasching C, Wilhelm L, Niggemann J, Steier P et al. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geosci 2012; 5:710–714 [View Article]
    [Google Scholar]
  106. Fellman JB, Hood E, Raymond PA, Hudson J, Bozeman M et al. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnol Oceanogr 2015; 60:1118–1128 [View Article]
    [Google Scholar]
  107. Perez-Mon C, Qi W, Vikram S, Frossard A, Makhalanyane T et al. Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps). Microb Genom 2021; 7:000558 [View Article] [PubMed]
    [Google Scholar]
  108. Rüthi J, Rast BM, Qi W, Perez-Mon C, Pardi-Comensoli L et al. The plastisphere microbiome in alpine soils alters the microbial genetic potential for plastic degradation and biogeochemical cycling. J Hazardous Mater 2023; 441:129941 [View Article]
    [Google Scholar]
  109. Yang Z, Zhang Y, Lv Y, Yan W, Xiao X et al. H2 metabolism revealed by metagenomic analysis of subglacial sediment from East Antarctica. J Microbiol 2019; 57:1095–1104 [View Article] [PubMed]
    [Google Scholar]
  110. Zehr JP, Jenkins BD, Short SM, Steward GF. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 2003; 5:539–554 [View Article] [PubMed]
    [Google Scholar]
  111. Colombo N, Bocchiola D, Martin M, Confortola G, Salerno F et al. High export of nitrogen and dissolved organic carbon from an Alpine glacier (Indren Glacier, NW Italian Alps). Aquat Sci 2019; 81: [View Article]
    [Google Scholar]
  112. Slemmons KEH, Saros JE. Implications of nitrogen‐rich glacial meltwater for phytoplankton diversity and productivity in alpine lakes. Limnol Oceanogr 2012; 57:1651–1663 [View Article]
    [Google Scholar]
  113. Lapanje A, Wimmersberger C, Furrer G, Brunner I, Frey B. Pattern of elemental release during the granite dissolution can be changed by aerobic heterotrophic bacterial strains isolated from Damma Glacier (central Alps) deglaciated granite sand. Microb Ecol 2012; 63:865–882 [View Article] [PubMed]
    [Google Scholar]
  114. Harrold ZR, Hausrath EM, Garcia AH, Murray AE, Tschauner O et al. Bioavailability of mineral-bound iron to a snow algal-bacterial coculture and implications for albedo-altering snow algal blooms. Appl Environ Microbiol 2018; 84:e02322-17 [View Article] [PubMed]
    [Google Scholar]
  115. Malard L, Bergk-Pinto B, Layton R, Vogel T, Larose C et al. Snow microorganisms colonise Arctic soils following snow melt. Review 2022 [View Article]
    [Google Scholar]
  116. Ballantyne CK, Black NM, Finlay DP. Enhanced boulder weathering under late‐lying snowpatches. Earth Surf Processes Landf 1989; 14:745–750 [View Article]
    [Google Scholar]
  117. Benedict JB. Influence of snow upon rates of granodiorite weathering, Colorado Front Range, USA. Boreas 1993; 22:87–92 [View Article]
    [Google Scholar]
  118. Thorn CE, Hall K. Nivation and cryoplanation: the case for scrutiny and integration. Progr Phys Geogr Earth Environ 2002; 26:533–550 [View Article]
    [Google Scholar]
  119. Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geol 1999; 27:107 [View Article]
    [Google Scholar]
  120. Mikucki JA, Priscu JC. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Appl Environ Microbiol 2007; 73:4029–4039 [View Article] [PubMed]
    [Google Scholar]
  121. Montross SN, Skidmore M, Tranter M, Kivimäki A-L, Parkes RJ. A microbial driver of chemical weathering in glaciated systems. Geology 2013; 41:215–218 [View Article]
    [Google Scholar]
  122. Skidmore M, Tranter M, Tulaczyk S, Lanoil B. Hydrochemistry of ice stream beds—evaporitic or microbial effects?. Hydrol Proces 2010; 24:517–523 [View Article]
    [Google Scholar]
  123. Lanoil B, Skidmore M, Priscu JC, Han S, Foo W et al. Bacteria beneath the West Antarctic ice sheet. Environ Microbiol 2009; 11:609–615 [View Article] [PubMed]
    [Google Scholar]
  124. Achberger AM. Structure and functional potential of microbial communities in Subglacial Lake Whillans and at the Ross Ice Shelf grounding zone, West Antarctica: Louisiana State University and Agricultural & Mechanical College; 2016
  125. Dold B, Gonzalez-Toril E, Aguilera A, Lopez-Pamo E, Cisternas ME et al. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean. Environ Sci Technol 2013; 47:6129–6136 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001301
Loading
/content/journal/mgen/10.1099/mgen.0.001301
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error