Skip to content
1887

Abstract

is a globally distributed opportunistic pathogen in human health settings, including in intensive care units (ICUs). We investigated the contamination of a French small animal ICU with . We discovered repeated animal contamination by , and phylogenetic analysis traced contamination back to a potential foreign animal origin. Genomic analysis combined with antibiotic susceptibility testing revealed heteroresistance to penicillin and aminoglycoside mediated by insertion sequence dynamics and also suggest a potential cross-resistance to human-restricted piperacillin–tazobactam combination. The isolates of the animal ICU belong to the International Clone 2 commonly found in human health settings. Our results suggest a high adaptation of this lineage to healthcare settings and provide questions on the requirements for genetic determinants enabling adaptation to host and abiotic conditions.

Funding
This study was supported by the:
  • Fondation pour la Recherche Médicale (FR) (Award EQU202303016268)
    • Principle Award Recipient: XavierCharpentier
  • Agence Nationale de la Recherche (FR) (Award ANR-11-IDEX-0007)
    • Principle Award Recipient: XavierCharpentier
  • Agence Nationale de la Recherche (FR) (Award ANR-11-LABX-0048)
    • Principle Award Recipient: XavierCharpentier
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001292
2024-10-14
2025-07-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/10/mgen001292.html?itemId=/content/journal/mgen/10.1099/mgen.0.001292&mimeType=html&fmt=ahah

References

  1. Lemos EV, de la Hoz FP, Einarson TR, McGhan WF, Quevedo E et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 2014; 20:416–423 [View Article] [PubMed]
    [Google Scholar]
  2. Iovleva A, Mustapha MM, Griffith MP, Komarow L, Luterbach C et al. Carbapenem-resistant Acinetobacter baumannii in U.S. hospitals: diversification of circulating lineages and antimicrobial resistance. mBio 2022; 13:e0275921 [View Article] [PubMed]
    [Google Scholar]
  3. World Health Organization WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: WHO; 2024
  4. Castillo-Ramírez S. Genomic epidemiology of Acinetobacter baumannii goes global. mBio 2023; 14:e02520-23 [View Article]
    [Google Scholar]
  5. Bi D, Xie R, Zheng J, Yang H, Zhu X et al. Large-scale identification of AbaR-type genomic islands in Acinetobacter baumannii reveals diverse insertion sites and clonal lineage-specific antimicrobial resistance gene profiles. Antimicrob Agents Chemother 2019; 63:e02526-18 [View Article] [PubMed]
    [Google Scholar]
  6. Hamidian M, Hall RM. Origin of the AbGRI1 antibiotic resistance island found in the comM gene of Acinetobacter baumannii GC2 isolates. J Antimicrob Chemother 2017; 72:2944–2947 [View Article] [PubMed]
    [Google Scholar]
  7. Salgado-Camargo AD, Castro-Jaimes S, Gutierrez-Rios R-M, Lozano LF, Altamirano-Pacheco L et al. Structure and evolution of Acinetobacter baumannii plasmids. Front Microbiol 2020; 11:1283 [View Article] [PubMed]
    [Google Scholar]
  8. Mann R, Rafei R, Gunawan C, Harmer CJ, Hamidian M. Variants of Tn6924, a novel Tn7 family transposon carrying the blaNDM metallo-β-lactamase and 14 copies of the apha6 amikacin resistance genes found in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e01745-21 [View Article]
    [Google Scholar]
  9. Sahl JW, Del Franco M, Pournaras S, Colman RE, Karah N et al. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci Rep 2015; 5:15188 [View Article] [PubMed]
    [Google Scholar]
  10. Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and genotypic characterization of clinical isolates belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex isolated from animals treated at a veterinary hospital in Switzerland. Front Vet Sci 2019; 6:17 [View Article] [PubMed]
    [Google Scholar]
  11. Endimiani A, Hujer KM, Hujer AM, Bertschy I, Rossano A et al. Acinetobacter baumannii isolates from pets and horses in Switzerland: molecular characterization and clinical data. J Antimicrob Chemother 2011; 66:2248–2254 [View Article] [PubMed]
    [Google Scholar]
  12. Ewers C, Klotz P, Scheufen S, Leidner U, Göttig S et al. Genome sequence of OXA-23 producing Acinetobacter baumannii IHIT7853, a carbapenem-resistant strain from a cat belonging to international clone IC1. Gut Pathog 2016; 8:37 [View Article] [PubMed]
    [Google Scholar]
  13. World Health Organization WHO’s list of medically important antimicrobials: a risk management tool for mitigating antimicrobial resistance due to non-human use. Geneva: WHO; 2024
  14. Hérivaux A, Pailhoriès H, Quinqueneau C, Lemarié C, Joly-Guillou M-L et al. First report of carbapenemase-producing Acinetobacter baumannii carriage in pets from the community in France. Int J Antimicrob Agents 2016; 48:220–221 [View Article] [PubMed]
    [Google Scholar]
  15. Castillo-Ramírez S. Zoonotic Acinetobacter baumannii: the need for genomic epidemiology in a One Health context. Lancet Microbe 2022; 3:e895–e896 [View Article] [PubMed]
    [Google Scholar]
  16. Pournaras S, Gogou V, Giannouli M, Dimitroulia E, Dafopoulou K et al. Single-locus-sequence-based typing of blaOXA-51-like genes for rapid assignment of Acinetobacter baumannii clinical isolates to international clonal lineages. J Clin Microbiol 2014; 52:1653–1657 [View Article] [PubMed]
    [Google Scholar]
  17. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  19. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  20. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article] [PubMed]
    [Google Scholar]
  21. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  22. Lam MMC, Koong J, Holt KE, Hall RM, Hamidian M. Detection and typing of plasmids in Acinetobacter baumannii using rep genes encoding replication initiation proteins. Microbiol Spectr 2023; 11:e0247822 [View Article] [PubMed]
    [Google Scholar]
  23. Seemann T. snippy: fast bacterial variant calling from NGS reads; 2015
  24. Moustafa AM, Planet PJ. WhatsGNU: a tool for identifying proteomic novelty. Genome Biol 2020; 21:58 [View Article] [PubMed]
    [Google Scholar]
  25. Mateo-Estrada V, Tyrrell C, Evans BA, Aguilar-Vera A, Drissner D et al. Acinetobacter baumannii from grass: novel but non-resistant clones. Microb Genom 2023; 9:mgen001054 [View Article] [PubMed]
    [Google Scholar]
  26. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom 2018; 4:e000166 [View Article] [PubMed]
    [Google Scholar]
  27. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395–1404 [View Article] [PubMed]
    [Google Scholar]
  28. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  31. Belmonte O, Pailhoriès H, Kempf M, Gaultier MP, Lemarié C et al. High prevalence of closely-related Acinetobacter baumannii in pets according to a multicentre study in veterinary clinics, Reunion Island. Vet Microbiol 2014; 170:446–450 [View Article] [PubMed]
    [Google Scholar]
  32. Doughty EL, Liu H, Moran RA, Hua X, Ba X et al. Endemicity and diversification of carbapenem-resistant Acinetobacter baumannii in an intensive care unit. Lancet Reg Health West Pac 2023; 37:100780 [View Article] [PubMed]
    [Google Scholar]
  33. Chatellier D, Burucoa C, Pinsard M, Frat J-P, Robert R. Prévalence un jour donné du portage d’Acinetobacter baumannii chez les patients de 53 réanimations françaises. Médecine et Maladies Infectieuses 2007; 37:112–117 [View Article]
    [Google Scholar]
  34. Harris AD, Johnson JK, Pineles L, O’Hara LM, Bonomo RA et al. Patient-to-patient transmission of Acinetobacter baumannii gastrointestinal colonization in the intensive care unit. Antimicrob Agents Chemother 2019; 63:00392-19 [View Article]
    [Google Scholar]
  35. Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9:148–165 [View Article] [PubMed]
    [Google Scholar]
  36. Mateo-Estrada V, Vali L, Hamouda A, Evans BA, Castillo-Ramírez S. Acinetobacter baumannii sampled from cattle and pigs represent novel clones. Microbiol Spectr 2022; 10:e0128922 [View Article] [PubMed]
    [Google Scholar]
  37. Bianco CM, Moustafa AM, O’Brien K, Martin MA, Read TD et al. Pre-epidemic evolution of the MRSA USA300 clade and a molecular key for classification. Front Cell Infect Microbiol 2023; 13:1081070 [View Article] [PubMed]
    [Google Scholar]
  38. Brovedan M, Repizo GD, Marchiaro P, Viale AM, Limansky A. Characterization of the diverse plasmid pool harbored by the blaNDM-1-containing Acinetobacter bereziniae HPC229 clinical strain. PLoS One 2019; 14:e0220584 [View Article] [PubMed]
    [Google Scholar]
  39. Wilharm G, Skiebe E, Łopińska A, Higgins PG, Weber K et al. On the ecology of Acinetobacter baumannii – jet stream rider and opportunist by nature. Microbiology 2024 [View Article]
    [Google Scholar]
  40. Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology 2014; 160:2253–2263 [View Article] [PubMed]
    [Google Scholar]
  41. Gao Y, Li H, Chen H, Zhang J, Wang R et al. Origin, phylogeny, and transmission of the epidemic clone ST208 of carbapenem-resistant Acinetobacter baumannii on a global scale. Microbiol Spectr 2022; 10:e0260421 [View Article] [PubMed]
    [Google Scholar]
  42. Naing SY, Hordijk J, Duim B, Broens EM, van der Graaf-van Bloois L et al. Genomic investigation of two Acinetobacter baumannii outbreaks in a veterinary intensive care unit in The Netherlands. Pathogens 2022; 11:123 [View Article] [PubMed]
    [Google Scholar]
  43. Hamidian M, Hall RM. ISAba1 targets a specific position upstream of the intrinsic ampC gene of Acinetobacter baumannii leading to cephalosporin resistance. J Antimicrob Chemother 2013; 68:2682–2683 [View Article] [PubMed]
    [Google Scholar]
  44. Nigro SJ, Hall RM. Antibiotic resistance islands in A320 (RUH134), the reference strain for Acinetobacter baumannii global clone 2. J Antimicrob Chemother 2012; 67:335–338 [View Article] [PubMed]
    [Google Scholar]
  45. Nigro SJ, Hall RM. Loss and gain of aminoglycoside resistance in global clone 2 Acinetobacter baumannii in Australia via modification of genomic resistance islands and acquisition of plasmids. J Antimicrob Chemother 2016; 71:2432–2440 [View Article] [PubMed]
    [Google Scholar]
  46. Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM et al. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. mBio 2014; 5:e00963-13 [View Article] [PubMed]
    [Google Scholar]
  47. Nigro SJ, Farrugia DN, Paulsen IT, Hall RM. A novel family of genomic resistance islands, AbGRI2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. J Antimicrob Chemother 2013; 68:554–557 [View Article] [PubMed]
    [Google Scholar]
  48. Nigro SJ, Wick R, Holt KE, Hall RM. Complete genome sequence of WM99c, an antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain representing an Australian GC2 lineage. Microbiol Resour Announc 2018; 7:e01199-18 [View Article] [PubMed]
    [Google Scholar]
  49. Pong CH, Harmer CJ, Ataide SF, Hall RM. An IS26 variant with enhanced activity. FEMS Microbiol Lett 2019; 366:fnz031 [View Article] [PubMed]
    [Google Scholar]
  50. Hubbard ATM, Mason J, Roberts P, Parry CM, Corless C et al. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of blaTEM-1B. Nat Commun 2020; 11:4915 [View Article] [PubMed]
    [Google Scholar]
  51. Harmer CJ, Lebreton F, Stam J, McGann PT, Hall RM. Mechanisms of IS26-mediated amplification of the aphA1 gene leading to tobramycin resistance in an Acinetobacter baumannii isolate. Microbiol Spectr 2022; 10:e0228722 [View Article] [PubMed]
    [Google Scholar]
  52. McGann P, Courvalin P, Snesrud E, Clifford RJ, Yoon E-J et al. Amplification of aminoglycoside resistance gene aphA1 in Acinetobacter baumannii results in tobramycin therapy failure. mBio 2014; 5:e00915 [View Article] [PubMed]
    [Google Scholar]
  53. Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol 2019; 17:479–496 [View Article] [PubMed]
    [Google Scholar]
  54. Krizova L, Poirel L, Nordmann P, Nemec A. TEM-1 β-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J Antimicrob Chemother 2013; 68:2786–2791 [View Article] [PubMed]
    [Google Scholar]
  55. De Gregorio E, Del Franco M, Martinucci M, Roscetto E, Zarrilli R et al. Biofilm-associated proteins: news from Acinetobacter. BMC Genom 2015; 16:933 [View Article] [PubMed]
    [Google Scholar]
  56. Goh HMS, Beatson SA, Totsika M, Moriel DG, Phan M-D et al. Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl Environ Microbiol 2013; 79:6535–6543 [View Article] [PubMed]
    [Google Scholar]
  57. Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X et al. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom 2018; 4:e000165 [View Article] [PubMed]
    [Google Scholar]
  58. Schultz MB, Pham Thanh D, Tran Do Hoan N, Wick RR, Ingle DJ et al. Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward. Microb Genom 2016; 2:e000050 [View Article] [PubMed]
    [Google Scholar]
  59. Amundsen SK, Smith GR. RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease. Microbiol Mol Biol Rev 2023; 87:e0004123 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001292
Loading
/content/journal/mgen/10.1099/mgen.0.001292
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error