Skip to content
1887

Graphical Abstract

Graphical Abstract

Abstract

While the viromes and immune systems of bats and rodents have been extensively studied, comprehensive data are lacking for insectivores (order Eulipotyphla) despite their wide geographic distribution. Anthropogenic land use and outdoor recreational activities, as well as changes in the range of shrews, may lead to an expansion of the human–shrew interface with the risk of spillover infections, as reported for Borna disease virus 1. We investigated the virome of 45 individuals of 4 white-toothed shrew species present in Europe, using metagenomic RNA sequencing of tissue and intestine pools. Moderate to high abundances of sequences related to the families , , and were detected. Whole genomes were determined for novel orthoparamyxoviruses (=3), orthonairoviruses (=2) and an orthohepevirus. The novel paramyxovirus, tentatively named Hasua virus, was phylogenetically related to the zoonotic Langya virus and Mòjiāng virus. The novel orthonairoviruses, along with the potentially zoonotic Erve virus, fall within the shrew-borne Thiafora virus genogroup. The highest viral RNA loads of orthoparamyxoviruses were detected in the kidneys, in well-perfused organs for orthonairoviruses and in the liver and intestine for orthohepevirus, indicating potential transmission routes. Notably, several shrews were found to be coinfected with viruses from different families. Our study highlights the virus diversity present in shrews, not only in biodiversity-rich regions but also in areas influenced by human activity. This study warrants further research to characterize and assess the clinical implications and risk of these viruses and the importance of shrews as reservoirs in European ecosystems.

Funding
This study was supported by the:
  • Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Award 3716 48 431 0)
    • Principle Award Recipient: JensJacob
  • Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Award 3718 484 250)
    • Principle Award Recipient: JensJacob
  • Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Award 3714 67 407 0)
    • Principle Award Recipient: JensJacob
  • Bundesministerium für Bildung und Forschung (Award 01KI2002)
    • Principle Award Recipient: JensJacob
  • Horizon 2020 Framework Programme (Award 874735)
    • Principle Award Recipient: MartinBeer
  • Bundesministerium für Bildung und Forschung (Award 01KI1722A)
    • Principle Award Recipient: MartinBeer
  • Bundesministerium für Bildung und Forschung (Award 01KI1903B)
    • Principle Award Recipient: RainerG. Ulrich
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001275
2024-08-01
2025-06-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/8/mgen001275.html?itemId=/content/journal/mgen/10.1099/mgen.0.001275&mimeType=html&fmt=ahah

References

  1. Dharmarajan G, Li R, Chanda E, Dean KR, Dirzo R et al. The animal origin of major human infectious diseases: what can past epidemics teach us about preventing the next pandemic?. Zoonoses 2022; 2:1–13 [View Article]
    [Google Scholar]
  2. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D et al. Global trends in emerging infectious diseases. Nature 2008; 451:990–993 [View Article] [PubMed]
    [Google Scholar]
  3. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science 2000; 287:443–449 [View Article] [PubMed]
    [Google Scholar]
  4. Luis AD, Hayman DTS, O’Shea TJ, Cryan PM, Gilbert AT et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special?. Proc Biol Sci 2013; 280:20122753 [View Article] [PubMed]
    [Google Scholar]
  5. Han BA, Schmidt JP, Bowden SE, Drake JM. Rodent reservoirs of future zoonotic diseases. Proc Natl Acad Sci 2015; 112:7039–7044 [View Article] [PubMed]
    [Google Scholar]
  6. Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol 2020; 18:461–471 [View Article] [PubMed]
    [Google Scholar]
  7. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL et al. Host and viral traits predict zoonotic spillover from mammals. Nature 2017; 546:646–650 [View Article] [PubMed]
    [Google Scholar]
  8. Wilson DE, Mittermaier RA. Handbook of the Mammals of the World. In Insectivores, Sloths and Colugos vol 8 Bellaterra (Barcelona): Lynx Edicions; 2017
    [Google Scholar]
  9. Esselstyn JA, Achmadi AS, Handika H, Swanson MT, Giarla TC et al. Fourteen new, endemic species of shrew (genus Crocidura) from Sulawesi reveal a spectacular island radiation. Bull Am Mus Nat Hist 2021; 454:1–108 [View Article]
    [Google Scholar]
  10. Bellocq JG de, Fornůsková A, Ďureje Ľ, Bartákova V, Daniszová K et al. First record of the greater white-toothed shrew, Crocidura russula, in the Czech Republic. J Vertebrate Biol 2023; 72:1–9 [View Article]
    [Google Scholar]
  11. van der Kooij J, Nyfors E. Citizen science reveals the first occurrence of the greater white-toothed shrew Crocidura russula in Fennoscandia. Mammalia 2023; 87:442–450 [View Article]
    [Google Scholar]
  12. Bond IF, Gilford E, McDevitt AD, Young MA, Coomber FG. First records of the greater white-toothed shrew Crocidura russula from Great Britain. Mammal Com 2022; 8:23–28 [View Article]
    [Google Scholar]
  13. Dürrwald R, Kolodziejek J, Weissenböck H, Nowotny N, Dürrwald R et al. The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus. PLoS One 2014; 9:e93659 [View Article] [PubMed]
    [Google Scholar]
  14. Rubbenstroth D, Schlottau K, Schwemmle M, Rissland J, Beer M. Human bornavirus research: back on track!. PLoS Pathog 2019; 15:e1007873 [View Article] [PubMed]
    [Google Scholar]
  15. Niller HH, Angstwurm K, Rubbenstroth D, Schlottau K, Ebinger A et al. Zoonotic spillover infections with Borna disease virus 1 leading to fatal human encephalitis, 1999-2019: an epidemiological investigation. Lancet Infect Dis 2020; 20:467–477 [View Article] [PubMed]
    [Google Scholar]
  16. Zeller HG, Karabatsos N, Calisher CH, Digoutte JP, Cropp CB et al. Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the family Bunyaviridae. . Arch Virol 1989; 108:211–227 [View Article] [PubMed]
    [Google Scholar]
  17. Chastel C, Main AJ, Richard P, Le Lay G, Legrand-Quillien MC et al. Erve virus, a probable member of Bunyaviridae family isolated from shrews (Crocidura russula) in France. Acta Virol 1989; 33:270–280 [PubMed]
    [Google Scholar]
  18. Dilcher M, Koch A, Hasib L, Dobler G, Hufert FT et al. Genetic characterization of Erve virus, a European Nairovirus distantly related to Crimean-Congo hemorrhagic fever virus. Virus Genes 2012; 45:426–432 [View Article] [PubMed]
    [Google Scholar]
  19. Ozeki T, Abe H, Ushijima Y, Nze-Nkogue C, Akomo-Okoue EF et al. Identification of novel orthonairoviruses from rodents and shrews in Gabon, Central Africa. J Gen Virol 2022; 103:1–12 [View Article] [PubMed]
    [Google Scholar]
  20. Low DHW, Ch’ng L, Su YCF, Linster M, Zhang R et al. Cencurut virus: a novel Orthonairovirus from Asian house shrews (Suncus murinus) in Singapore. One Health 2023; 16:100529 [View Article]
    [Google Scholar]
  21. Hawman DW, Feldmann H. Crimean-Congo haemorrhagic fever virus. Nat Rev Microbiol 2023; 21:463–477 [View Article] [PubMed]
    [Google Scholar]
  22. Zhang X-A, Li H, Jiang F-C, Zhu F, Zhang Y-F et al. A zoonotic Henipavirus in febrile patients in China. N Engl J Med 2022; 387:470–472 [View Article] [PubMed]
    [Google Scholar]
  23. Lee S-H, Kim K, Kim J, No JS, Park K et al. Discovery and genetic characterization of novel paramyxoviruses related to the genus Henipavirus in Crocidura species in the Republic of Korea. Viruses 2021; 13:1–16 [View Article] [PubMed]
    [Google Scholar]
  24. Vanmechelen B, Meurs S, Horemans M, Loosen A, Joly Maes T et al. The characterization of multiple novel paramyxoviruses highlights the diverse nature of the subfamily Orthoparamyxovirinae. Virus Evol 2022; 8:1–12 [View Article] [PubMed]
    [Google Scholar]
  25. Horemans M, Van Bets J, Joly Maes T, Maes P, Vanmechelen B. Discovery and genome characterization of six new orthoparamyxoviruses in small Belgian mammals. Virus Evol 2023; 9:vead065 [View Article] [PubMed]
    [Google Scholar]
  26. Diederich S, Babiuk S, Boshra H. A survey of Henipavirus tropism-our current understanding from a species/organ and cellular Level. Viruses 2023; 15:2048 [View Article] [PubMed]
    [Google Scholar]
  27. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288:1432–1435 [View Article] [PubMed]
    [Google Scholar]
  28. Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D et al. Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic. Pathogens 2022; 11:1–16 [View Article] [PubMed]
    [Google Scholar]
  29. Chen Y-M, Hu S-J, Lin X-D, Tian J-H, Lv J-X et al. Host traits shape virome composition and virus transmission in wild small mammals. Cell 2023; 186:1–14 [View Article] [PubMed]
    [Google Scholar]
  30. Schlegel M, Ali HS, Stieger N, Groschup MH, Wolf R et al. Molecular identification of small mammal species using novel cytochrome b gene-derived degenerated primers. Biochem Genet 2012; 50:440–447 [View Article] [PubMed]
    [Google Scholar]
  31. Wylezich C, Calvelage S, Schlottau K, Ziegler U, Pohlmann A et al. Next-generation diagnostics: virus capture facilitates a sensitive viral diagnosis for epizootic and zoonotic pathogens including SARS-CoV-2. Microbiome 2021; 9:51 [View Article] [PubMed]
    [Google Scholar]
  32. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012; 28:3211–3217 [View Article] [PubMed]
    [Google Scholar]
  33. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article] [PubMed]
    [Google Scholar]
  34. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience 2019; 8:giz100 [View Article] [PubMed]
    [Google Scholar]
  35. Tamames J, Puente-Sánchez F. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front Microbiol 2018; 9:3349 [View Article] [PubMed]
    [Google Scholar]
  36. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  37. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  38. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  39. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  40. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al. Primer3--new capabilities and interfaces. Nucleic Acids Res 2012; 40:e115 [View Article] [PubMed]
    [Google Scholar]
  41. Schlottau K, Forth L, Angstwurm K, Höper D, Zecher D et al. Fatal encephalitic Borna disease virus 1 in solid-organ transplant recipients. N Engl J Med 2018; 379:1377–1379 [View Article] [PubMed]
    [Google Scholar]
  42. Wernike K, Hoffmann B, Kalthoff D, König P, Beer M. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. J Virol Methods 2011; 174:77–84 [View Article] [PubMed]
    [Google Scholar]
  43. Rima B, Balkema-Buschmann A, Dundon WG, Duprex P, Easton A et al. ICTV virus taxonomy profile: paramyxoviridae. J Gen Virol 2019; 100:1593–1594 [View Article]
    [Google Scholar]
  44. Crawford K. ECDC- European Centre for Disease Prevention and Control CDTR-Communicable Disease Threats Report: Weekly Report Week 38, 17 - 23 September 2023; 2023 https://www.ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-17-23-september-2023-week-38 accessed 26 September 2023
  45. Caruso S, Edwards SJ. Recently emerged novel Henipa-like viruses: shining a spotlight on the Shrew. Viruses 2023; 15:2407 [View Article] [PubMed]
    [Google Scholar]
  46. Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P et al. Bats host major mammalian paramyxoviruses. Nat Commun 2012; 3:1–12 [View Article] [PubMed]
    [Google Scholar]
  47. Garrison AR, Alkhovsky [Альховский Сергей Владимирович] SV, Avšič-Županc T, Bente DA, Bergeron É et al. ICTV virus taxonomy profile: Nairoviridae. J Gen Virol 2020; 101:798–799 [View Article]
    [Google Scholar]
  48. Negredo A, Sánchez-Arroyo R, Díez-Fuertes F, de Ory F, Budiño MA et al. Fatal case of Crimean-Congo hemorrhagic fever caused by reassortant virus, Spain, 2018. Emerg Infect Dis 2021; 27:1211–1215 [View Article] [PubMed]
    [Google Scholar]
  49. Geyer B, Erickson NA, Müller K, Grübel S, Hueber B et al. Establishing and maintaining an Etruscan shrew colony. J Am Assoc Lab Anim Sci 2022; 61:52–60 [View Article] [PubMed]
    [Google Scholar]
  50. Treib J, Dobler G, Haass A, von Blohn W, Strittmatter M et al. Thunderclap headache caused by Erve virus?. Neurology 1998; 50:509–511 [View Article] [PubMed]
    [Google Scholar]
  51. Johne R, Dremsek P, Reetz J, Heckel G, Hess M et al. Hepeviridae: an expanding family of vertebrate viruses. Infect Genet Evol 2014; 27:212–229 [View Article] [PubMed]
    [Google Scholar]
  52. Velavan TP, Pallerla SR, Johne R, Todt D, Steinmann E et al. Hepatitis E: an update on One Health and clinical medicine. Liver Int 2021; 41:1462–1473 [View Article] [PubMed]
    [Google Scholar]
  53. Johne R, Heckel G, Plenge-Bönig A, Kindler E, Maresch C et al. Novel hepatitis E virus genotype in Norway rats, Germany. Emerg Infect Dis 2010; 16:1452–1455 [View Article] [PubMed]
    [Google Scholar]
  54. Kolodziejek J, Dürrwald R, Herzog S, Ehrensperger F, Lussy H et al. Genetic clustering of Borna disease virus natural animal isolates, laboratory and vaccine strains strongly reflects their regional geographical origin. J Gen Virol 2005; 86:385–398 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001275
Loading
/content/journal/mgen/10.1099/mgen.0.001275
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error