Skip to content
1887

Abstract

poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 . and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (=274/1072, 26 %), KL51 (=249/1072, 24 %), and KL2 (=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (=471/1072, 44 %), O1/O2v2 (=353/1072, 33 %), and OL101 (=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson’s diversity index and Fisher’s exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (<0.05) with KL types but no association with O antigen types (>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of infections across India. This article contains data hosted by Microreact.

Funding
This study was supported by the:
  • National Institute for Health and Care Research (Award 16_136_111)
    • Principle Award Recipient: M AanensenDavid
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001271
2024-07-22
2025-05-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/7/mgen001271.html?itemId=/content/journal/mgen/10.1099/mgen.0.001271&mimeType=html&fmt=ahah

References

  1. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13:785–796 [View Article] [PubMed]
    [Google Scholar]
  2. Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 Suppl 1:S81–7 [View Article] [PubMed]
    [Google Scholar]
  3. Jarvis WR, Munn VP, Highsmith AK, Culver DH, Hughes JM. The epidemiology of nosocomial infections caused by Klebsiella pneumoniae. Infect Control 1985; 6:68–74 [View Article] [PubMed]
    [Google Scholar]
  4. Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107–118 [View Article] [PubMed]
    [Google Scholar]
  5. Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 2009; 4:e4982 [View Article] [PubMed]
    [Google Scholar]
  6. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2014; 20:1812–1820 [View Article] [PubMed]
    [Google Scholar]
  7. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 2015; 112:E3574–81 [View Article] [PubMed]
    [Google Scholar]
  8. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 2008; 29:1099–1106 [View Article] [PubMed]
    [Google Scholar]
  9. Mohamudha Parveen R, Harish BN, Parija SC. Emerging carbapenem resistance among nosocomial isolates of Klebsiella pneumoniae in south India. n.d https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=cfd28503dbf419a6dcf6d45852adf8561e78beb8
  10. Shankar C, Kumar S, Venkatesan M, Veeraraghavan B. Emergence of ST147 Klebsiella pneumoniae carrying blaNDM-7 on IncA/C2 with ompK35 and ompK36 mutations in India. J Infect Public Health 2019; 12:741–743 [View Article] [PubMed]
    [Google Scholar]
  11. Zhang R, Lin D, Chan EW-C, Gu D, Chen G-X et al. Emergence of carbapenem-resistant serotype K1 Hypervirulent Klebsiella pneumoniae strains in china. Antimicrob Agents Chemother 2016; 60:709–711 [View Article] [PubMed]
    [Google Scholar]
  12. Fang C-T, Lai S-Y, Yi W-C, Hsueh P-R, Liu K-L et al. Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis 2007; 45:284–293 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang Y, Zhao C, Wang Q, Wang X, Chen H et al. High prevalence of hypervirulent klebsiella pneumoniae infection in China: geographic distribution, clinical characteristics, and antimicrobial resistance. Antimicrob Agents Chemother 2016; 60:6115–6120 [View Article] [PubMed]
    [Google Scholar]
  14. Hyun M, Lee JY, Ryu S-Y, Ryoo N, Kim HA. Antibiotic resistance and clinical presentation of Health Care-Associated Hypervirulent Klebsiella pneumoniae Infection in Korea. Microb Drug Resist 2019; 25:1204–1209 [View Article] [PubMed]
    [Google Scholar]
  15. Raj S, Sharma T, Pradhan D, Tyagi S, Gautam H et al. Comparative analysis of clinical and genomic characteristics of hypervirulent Klebsiella pneumoniae from Hospital and Community Settings: Experience from a Tertiary Healthcare Center in India. Microbiol Spectr 2022; 10:e0037622 [View Article] [PubMed]
    [Google Scholar]
  16. Yadav B, Mohanty S, Behera B. Occurrence and genomic characteristics of Hypervirulent Klebsiella pneumoniae in a Tertiary Care Hospital, Eastern India. Infect Drug Resist 2023; 16:2191–2201 [View Article] [PubMed]
    [Google Scholar]
  17. He Z, Xu W, Zhao H, Li W, Dai Y et al. Epidemiological characteristics an outbreak of ST11 multidrug-resistant and hypervirulent Klebsiella pneumoniae in Anhui, China. Front Microbiol 2022; 13:996753 [View Article] [PubMed]
    [Google Scholar]
  18. Chen J, Zhang H, Liao X. Hypervirulent Klebsiella pneumoniae. Infect Drug Resist 2023; 16:5243–5249 [View Article]
    [Google Scholar]
  19. Roscioli E, Galli Fonseca VZ, Bosch SS, Paciello I, Maccari G et al. Anti-capsule human monoclonal antibodies protect against hypervirulent and pandrug-resistant Klebsiella pneumoniae. bioRxiv 2024 [View Article]
    [Google Scholar]
  20. Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb Genom 2016; 2:e000073 [View Article] [PubMed]
    [Google Scholar]
  21. Pletz MW, Uebele J, Götz K, Hagel S, Bekeredjian-Ding I. Vaccines against major ICU pathogens: where do we stand?. Curr Opin Crit Care 2016; 22:470–476 [View Article] [PubMed]
    [Google Scholar]
  22. Choi M, Hegerle N, Nkeze J, Sen S, Jamindar S et al. The diversity of lipopolysaccharide (O) and capsular polysaccharide (K) antigens of invasive Klebsiella pneumoniae in a multi-country collection. Front Microbiol 2020; 11:1249 [View Article] [PubMed]
    [Google Scholar]
  23. Feldman MF, Mayer Bridwell AE, Scott NE, Vinogradov E, McKee SR et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc Natl Acad Sci USA 2019; 116:18655–18663 [View Article] [PubMed]
    [Google Scholar]
  24. Cross TBA, Simon R, Michon F. Novel Multivalent Vaccine for Gram-Negative Bacterial Pathogens, Including Multiple Antibiotic-Resistant Strains World Vaccine Congress;
    [Google Scholar]
  25. Assoni L, Girardello R, Converso TR, Darrieux M. Current stage in the development of Klebsiella pneumoniae vaccines. Infect Dis Ther 2021; 10:2157–2175 [View Article] [PubMed]
    [Google Scholar]
  26. Opoku-Temeng C, Kobayashi SD, DeLeo FR. Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J 2019; 17:1360–1366 [View Article] [PubMed]
    [Google Scholar]
  27. Huang X, Li X, An H, Wang J, Ding M et al. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 2022; 18:e1010693 [View Article] [PubMed]
    [Google Scholar]
  28. Pan Y-J, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015; 5:15573 [View Article] [PubMed]
    [Google Scholar]
  29. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article] [PubMed]
    [Google Scholar]
  30. Yang Q, Jia X, Zhou M, Zhang H, Yang W et al. Emergence of ST11-K47 and ST11-K64 hypervirulent carbapenem-resistant Klebsiella pneumoniae in bacterial liver abscesses from China: a molecular, biological, and epidemiological study. Emerg Microbes Infect 2020; 9:320–331 [View Article] [PubMed]
    [Google Scholar]
  31. Gu D, Dong N, Zheng Z, Lin D, Huang M et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in A Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 2018; 18:37–46 [View Article] [PubMed]
    [Google Scholar]
  32. Huang Y-H, Chou S-H, Liang S-W, Ni C-E, Lin Y-T et al. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother 2018; 73:2039–2046 [View Article] [PubMed]
    [Google Scholar]
  33. Wang Z, Guo G, Li Q, Li P, Li M et al. Combing Immunoinformatics with Pangenome Analysis To Design a Multiepitope Subunit Vaccine against Klebsiella pneumoniae K1, K2, K47, and K64. Microbiol Spectr 2022; 10:e0114822 [View Article]
    [Google Scholar]
  34. Nagaraj G, Shamanna V, Govindan V, Rose S, Sravani D et al. High-resolution genomic profiling of carbapenem-resistant Klebsiella pneumoniae isolates: a multicentric retrospective indian study. Clin Infect Dis 2021; 73:S300–S307 [View Article] [PubMed]
    [Google Scholar]
  35. Sundaresan AK, Vincent K, Mohan GBM, Ramakrishnan J. Association of sequence types, antimicrobial resistance and virulence genes in Indian isolates of Klebsiella pneumoniae: a comparative genomics study. J Glob Antimicrob Resist 2022; 30:431–441 [View Article] [PubMed]
    [Google Scholar]
  36. Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med 2020; 12:11 [View Article] [PubMed]
    [Google Scholar]
  37. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016; 80:629–661 [View Article] [PubMed]
    [Google Scholar]
  38. Underwood A. GHRU (Genomic surveillance of antimicrobial resistance) retrospective1 bioinfromatics methods; 2020 https://www.protocols.io/view/ghru-genomic-surveillance-of-antimicrobial-resista-bp2l6b11kgqe/v4
  39. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  40. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  41. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  42. Lam MMC, Wick RR, Judd LM, Holt KE, Wyres KL. Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microb Genom 2022; 8:000800 [View Article] [PubMed]
    [Google Scholar]
  43. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  44. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  45. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  46. Wickham H. ggplot2: Elegant graphics for data analysis. Springer Science & Business Media; 2009 https://play.google.com/store/books/details?id=bes-AAAAQBAJ
  47. Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation R package version 0.7. 6. n.d https://dplyr.tidyverse.org/index.html
  48. Boehmke BC. Reshaping your data with tidyr. In Boehmke CB. ed Data wrangling with R Cham: Springer International Publishing; 2016 pp 211–218 [View Article]
    [Google Scholar]
  49. Reid S, Hernandez-Fernaud JR, Zanivan S. In vivo quantitative proteomics for the study of oncometabolism. Methods Enzymol 2014; 543:235–259 [View Article] [PubMed]
    [Google Scholar]
  50. Prince SE, Dominger KA, Cunha BA, Klein NC. Klebsiella pneumoniae pneumonia. Heart Lung 1997; 26:413–417 [View Article] [PubMed]
    [Google Scholar]
  51. Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti Infect Ther 2018; 16:749–761 [View Article] [PubMed]
    [Google Scholar]
  52. Cryz SJ, Mortimer PM, Mansfield V, Germanier R. Seroepidemiology of Klebsiella bacteremic isolates and implications for vaccine development. J Clin Microbiol 1986; 23:687–690 [View Article] [PubMed]
    [Google Scholar]
  53. Jenney AW, Clements A, Farn JL, Wijburg OL, McGlinchey A et al. Seroepidemiology of Klebsiella pneumoniae in an Australian Tertiary Hospital and its implications for vaccine development. J Clin Microbiol 2006; 44:102–107 [View Article] [PubMed]
    [Google Scholar]
  54. Yu VL, Hansen DS, Ko WC, Sagnimeni A, Klugman KP et al. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis 2007; 13:986–993 [View Article] [PubMed]
    [Google Scholar]
  55. Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun 2022; 13:3017 [View Article] [PubMed]
    [Google Scholar]
  56. Shankar C, Mathur P, Jacob JJ, Rodrigues C, Walia K et al. Genomic insights into multi-drug and extensively drug resistant Klebsiella pneumoniae from India. International Journal of Infectious Diseases 2020; 101:12–13 [View Article]
    [Google Scholar]
  57. Datta A, Kapre K, Andi-Lolo I, Kapre S. Multi-valent pneumococcal conjugate vaccine for global health: from problem to platform to production. Hum Vaccin Immunother 2022; 18:2117949 [View Article] [PubMed]
    [Google Scholar]
  58. Fung C-P, Chang F-Y, Lee S-C, Hu B-S, Kuo BI-T et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis?. Gut 2002; 50:420–424 [View Article] [PubMed]
    [Google Scholar]
  59. Neumann B, Stürhof C, Rath A, Kieninger B, Eger E et al. Detection and characterization of putative hypervirulent Klebsiella pneumoniae isolates in microbiological diagnostics. Sci Rep 2023; 13:19025 [View Article] [PubMed]
    [Google Scholar]
  60. Parrott AM, Shi J, Aaron J, Green DA, Whittier S et al. Detection of multiple hypervirulent Klebsiella pneumoniae strains in a New York City hospital through screening of virulence genes. Clin Microbiol Infect 2021; 27:583–589 [View Article] [PubMed]
    [Google Scholar]
  61. Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun 2014; 82:2356–2367 [View Article] [PubMed]
    [Google Scholar]
  62. Bean DC, Agarwal A, Cherian BP, Wareham DW. Hypermucoviscous polymyxin-resistant Klebsiella pneumoniae from Kolkata, India: genomic and phenotypic analysis. J Glob Antimicrob Resist 2019; 17:1–2 [View Article] [PubMed]
    [Google Scholar]
  63. Choby JE, Howard-Anderson J, Weiss DS. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives. J Intern Med 2020; 287:283–300 [View Article] [PubMed]
    [Google Scholar]
  64. Catalán-Nájera JC, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes?. Virulence 2017; 8:1111–1123 [View Article] [PubMed]
    [Google Scholar]
  65. Flores-Valdez M, Ares MA, Rosales-Reyes R, Torres J, Girón JA et al. Whole genome sequencing of pediatric Klebsiella pneumoniae strains reveals important insights into their virulence-associated traits. Front Microbiol 2021; 12:711577 [View Article] [PubMed]
    [Google Scholar]
  66. Wantuch PL, Knoot CJ, Robinson LS, Vinogradov E, Scott NE et al. A heptavalent O-antigen bioconjugate vaccine exhibits differential functional antibody responses against diverse Klebsiella pneumoniae isolates. bioRxiv 2023 [View Article] [PubMed]
    [Google Scholar]
  67. Hsieh P-F, Lin T-L, Yang F-L, Wu M-C, Pan Y-J et al. Lipopolysaccharide O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic liver abscess. PLoS One 2012; 7:e33155 [View Article] [PubMed]
    [Google Scholar]
  68. Wantuch PL, Knoot CJ, Robinson LS, Vinogradov E, Scott NE et al. Capsular polysaccharide inhibits vaccine-induced O-antigen antibody binding and function across both classical and hypervirulent K2:O1 strains of Klebsiella pneumoniae. PLoS Pathog 2023; 19:e1011367 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001271
Loading
/content/journal/mgen/10.1099/mgen.0.001271
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error